GIT-GC(1) Git Manual GIT-GC(1)

NAME

git-gc — Cleanup unnecessary files and optimize the local repository

SYNOPSIS

git gc [——aggressive] [-—auto] [-—quiet] [-—prune=<date> | ——no—prune] [-—force] [-—keep—largest—pack]

DESCRIPTION
Runs a number of housekeeping tasks within the current repository, such as compressing file revisions (to
reduce disk space and increase performance), removing unreachable objects which may have been created
from prior invocations of git add, packing refs, pruning reflog, rerere metadata or stale working trees. May
also update ancillary indexes such as the commit—graph.

Users are encouraged to run this task on a regular basis within each repository to maintain good disk space
utilization and good operating performance.

Some git commands may automatically run git gc; see the ——auto flag below for details. If you know what
you’re doing and all you want is to disable this behavior permanently without further considerations, just
do:

$ git config ——global gc.auto 0
OPTIONS

——aggressive
Usually git gc runs very quickly while providing good disk space utilization and performance. This
option will cause git gc to more aggressively optimize the repository at the expense of taking much
more time. The effects of this optimization are persistent, so this option only needs to be used
occasionally; every few hundred changesets or so.

——auto
With this option, git gc checks whether any housekeeping is required; if not, it exits without
performing any work. Some git commands run git gc ——auto after performing operations that could
create many loose objects. Housekeeping is required if there are too many loose objects or too many
packs in the repository.

If the number of loose objects exceeds the value of the gc.auto configuration variable, then all loose
objects are combined into a single pack using git repack —d 1. Setting the value of gec.auto to 0
disables automatic packing of loose objects.

If the number of packs exceeds the value of gc.autoPackLimit, then existing packs (except those
marked with a .keep file or over gc.bigPackThreshold limit) are consolidated into a single pack by
using the —A option of git repack. If the amount of memory is estimated not enough for git repack to
run smoothly and ge.bigPackThreshold is not set, the largest pack will also be excluded (this is the
equivalent of running git gc with ——keep—base—pack). Setting gc.autoPackLimit to O disables
automatic consolidation of packs.

If houskeeping is required due to many loose objects or packs, all other housekeeping tasks (e.g.
rerere, working trees, reflog...) will be performed as well.

——prune=<date>
Prune loose objects older than date (default is 2 weeks ago, overridable by the config variable
gc.pruneExpire). ——prune=all prunes loose objects regardless of their age and increases the risk of
corruption if another process is writing to the repository concurrently; see "NOTES" below. —prune
is on by default.

——no—prune
Do not prune any loose objects.

——quiet
Suppress all progress reports.

——force

Git 2.20.1 06/26/2024 1



GIT-GC(1) Git Manual GIT-GC(1)

Force git gc to run even if there may be another git gc instance running on this repository.

——keep-largest—pack
All packs except the largest pack and those marked with a .keep files are consolidated into a single
pack. When this option is used, gc.bigPackThreshold is ignored.

CONFIGURATION
The optional configuration variable gc.reflogExpire can be set to indicate how long historical entries within
each branch’s reflog should remain available in this repository. The setting is expressed as a length of time,
for example 90 days or 3 months. It defaults to 90 days.

The optional configuration variable ge.reflogExpireUnreachable can be set to indicate how long historical
reflog entries which are not part of the current branch should remain available in this repository. These
types of entries are generally created as a result of using git commit ——amend or git rebase and are the
commits prior to the amend or rebase occurring. Since these changes are not part of the current project most
users will want to expire them sooner. This option defaults to 30 days.

The above two configuration variables can be given to a pattern. For example, this sets non—default expiry
values only to remote—tracking branches:

[gc "refs/remotes/*"]
reflogExpire = never
reflogExpireUnreachable = 3 days

The optional configuration variable gc.rerereResolved indicates how long records of conflicted merge you
resolved earlier are kept. This defaults to 60 days.

The optional configuration variable ge.rerereUnresolved indicates how long records of conflicted merge
you have not resolved are kept. This defaults to 15 days.

The optional configuration variable gc.packRefs determines if git gc runs git pack—refs. This can be set to
"notbare" to enable it within all non—bare repos or it can be set to a boolean value. This defaults to true.

The optional configuration variable gc.commitGraph determines if git gc should run git commit—graph
write. This can be set to a boolean value. This defaults to false.

The optional configuration variable gc.aggressiveWindow controls how much time is spent optimizing the
delta compression of the objects in the repository when the ——aggressive option is specified. The larger the
value, the more time is spent optimizing the delta compression. See the documentation for the —window
option in git-repack(1) for more details. This defaults to 250.

Similarly, the optional configuration variable gc.aggressiveDepth controls —depth option in
git-repack(1). This defaults to 50.

The optional configuration variable ge.pruneExpire controls how old the unreferenced loose objects have
to be before they are pruned. The default is "2 weeks ago".

Optional configuration variable gc.worktreePruneExpire controls how old a stale working tree should be
before git worktree prune deletes it. Default is "3 months ago".

NOTES
git gc tries very hard not to delete objects that are referenced anywhere in your repository. In particular, it
will keep not only objects referenced by your current set of branches and tags, but also objects referenced
by the index, remote—tracking branches, refs saved by git filter—branch in refs/original/, or reflogs (which
may reference commits in branches that were later amended or rewound). If you are expecting some objects
to be deleted and they aren’t, check all of those locations and decide whether it makes sense in your case to
remove those references.

On the other hand, when git gc runs concurrently with another process, there is a risk of it deleting an
object that the other process is using but hasn’t created a reference to. This may just cause the other process
to fail or may corrupt the repository if the other process later adds a reference to the deleted object. Git has
two features that significantly mitigate this problem:

Git 2.20.1 06/26/2024 2


http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-repack
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-repack

GIT-GC(1) Git Manual GIT-GC(1)

1. Any object with modification time newer than the ——prune date is kept, along with everything
reachable from it.

2. Most operations that add an object to the database update the modification time of the object if it
is already present so that #1 applies.

However, these features fall short of a complete solution, so users who run commands concurrently have to
live with some risk of corruption (which seems to be low in practice) unless they turn off automatic garbage
collection with git config gc.auto 0.

HOOKS

The git gc ——auto command will run the pre—auto—gc hook. See githooks(5) for more information.

SEE ALSO
git-prune(1) git-reflog(1) git-repack(1) git-rerere(1)

GIT
Part of the git(1) suite

Git 2.20.1 06/26/2024 3


http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/githooks
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-prune
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-reflog
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-repack
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-rerere
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git

	GIT-GC(1)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	OPTIONS
	OPTIONS

	CONFIGURATION
	CONFIGURATION

	NOTES
	NOTES

	HOOKS
	HOOKS

	SEE ALSO
	SEE ALSO

	GIT
	GIT


