
GIT-NOTES(1) Git Manual GIT-NOTES(1)

NAME
git-notes - Add or inspect object notes

SYNOPSIS
git notes [list [<object>]]
git notes add [-f] [--allow-empty] [-F <file> | -m <msg> | (-c | -C) <object>] [<object>]
git notes copy [-f] (--stdin | <from-object> <to-object>)
git notes append [--allow-empty] [-F <file> | -m <msg> | (-c | -C) <object>] [<object>]
git notes edit [--allow-empty] [<object>]
git notes show [<object>]
git notes merge [-v | -q] [-s <strategy>] <notes-ref>
git notes merge --commit [-v | -q]
git notes merge --abort [-v | -q]
git notes remove [--ignore-missing] [--stdin] [<object>...]
git notes prune [-n] [-v]
git notes get-ref

DESCRIPTION
Adds, removes, or reads notes attached to objects, without touching the objects themselves.

By default, notes are saved to and read from refs/notes/commits, but this default can be overridden. See the
OPTIONS, CONFIGURATION, and ENVIRONMENT sections below. If this ref does not exist, it will be
quietly created when it is first needed to store a note.

A typical use of notes is to supplement a commit message without changing the commit itself. Notes can be
shown by git log along with the original commit message. To distinguish these notes from the message
stored in the commit object, the notes are indented like the message, after an unindented line saying "Notes
(<refname>):" (or "Notes:" for refs/notes/commits).

Notes can also be added to patches prepared with git format-patch by using the --notes option. Such
notes are added as a patch commentary after a three dash separator line.

To change which notes are shown by git log, see the "notes.displayRef" configuration in git-log(1).

See the "notes.rewrite.<command>" configuration for a way to carry notes across commands that rewrite
commits.

SUBCOMMANDS
list

List the notes object for a given object. If no object is given, show a list of all note objects and the
objects they annotate (in the format "<note object> <annotated object>"). This is the default
subcommand if no subcommand is given.

add
Add notes for a given object (defaults to HEAD). Abort if the object already has notes (use -f to
overwrite existing notes). However, if you’re using add interactively (using an editor to supply the
notes contents), then - instead of aborting - the existing notes will be opened in the editor (like the
edit subcommand).

copy
Copy the notes for the first object onto the second object. Abort if the second object already has notes,
or if the first object has none (use -f to overwrite existing notes to the second object). This
subcommand is equivalent to: git notes add [-f] -C $(git notes list <from-object>) <to-object>

In --stdin mode, take lines in the format

<from-object> SP <to-object> [SP <rest>] LF

on standard input, and copy the notes from each <from-object> to its corresponding <to-object>.
(The optional <rest> is ignored so that the command can read the input given to the post-rewrite
hook.)

Git 2.20.1 06/26/2024 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-log

GIT-NOTES(1) Git Manual GIT-NOTES(1)

append
Append to the notes of an existing object (defaults to HEAD). Creates a new notes object if needed.

edit
Edit the notes for a given object (defaults to HEAD).

show
Show the notes for a given object (defaults to HEAD).

merge
Merge the given notes ref into the current notes ref. This will try to merge the changes made by the
given notes ref (called "remote") since the merge-base (if any) into the current notes ref (called
"local").

If conflicts arise and a strategy for automatically resolving conflicting notes (see the "NOTES MERGE
STRATEGIES" section) is not given, the "manual" resolver is used. This resolver checks out the
conflicting notes in a special worktree (.git/NOTES_MERGE_WORKTREE), and instructs the user
to manually resolve the conflicts there. When done, the user can either finalize the merge with git
notes merge --commit, or abort the merge with git notes merge --abort.

remove
Remove the notes for given objects (defaults to HEAD). When giving zero or one object from the
command line, this is equivalent to specifying an empty note message to the edit subcommand.

prune
Remove all notes for non-existing/unreachable objects.

get-ref
Print the current notes ref. This provides an easy way to retrieve the current notes ref (e.g. from
scripts).

OPTIONS
-f, --force

When adding notes to an object that already has notes, overwrite the existing notes (instead of
aborting).

-m <msg>, --message=<msg>
Use the given note message (instead of prompting). If multiple -m options are given, their values are
concatenated as separate paragraphs. Lines starting with # and empty lines other than a single line
between paragraphs will be stripped out.

-F <file>, --file=<file>
Take the note message from the given file. Use - to read the note message from the standard input.
Lines starting with # and empty lines other than a single line between paragraphs will be stripped out.

-C <object>, --reuse-message=<object>
Take the given blob object (for example, another note) as the note message. (Use git notes copy
<object> instead to copy notes between objects.)

-c <object>, --reedit-message=<object>
Like -C, but with -c the editor is invoked, so that the user can further edit the note message.

--allow-empty
Allow an empty note object to be stored. The default behavior is to automatically remove empty notes.

--ref <ref>
Manipulate the notes tree in <ref>. This overrides GIT_NOTES_REF and the "core.notesRef"
configuration. The ref specifies the full refname when it begins with refs/notes/; when it begins with
notes/, refs/ and otherwise refs/notes/ is prefixed to form a full name of the ref.

--ignore-missing
Do not consider it an error to request removing notes from an object that does not have notes attached
to it.

Git 2.20.1 06/26/2024 2

GIT-NOTES(1) Git Manual GIT-NOTES(1)

--stdin
Also read the object names to remove notes from the standard input (there is no reason you cannot
combine this with object names from the command line).

-n, --dry-run
Do not remove anything; just report the object names whose notes would be removed.

-s <strategy>, --strategy=<strategy>
When merging notes, resolve notes conflicts using the given strategy. The following strategies are
recognized: "manual" (default), "ours", "theirs", "union" and "cat_sort_uniq". This option overrides
the "notes.mergeStrategy" configuration setting. See the "NOTES MERGE STRATEGIES" section
below for more information on each notes merge strategy.

--commit
Finalize an in-progress git notes merge. Use this option when you have resolved the conflicts that git
notes merge stored in .git/NOTES_MERGE_WORKTREE. This amends the partial merge commit
created by git notes merge (stored in .git/NOTES_MERGE_PARTIAL) by adding the notes in
.git/NOTES_MERGE_WORKTREE. The notes ref stored in the .git/NOTES_MERGE_REF symref is
updated to the resulting commit.

--abort
Abort/reset an in-progress git notes merge, i.e. a notes merge with conflicts. This simply removes all
files related to the notes merge.

-q, --quiet
When merging notes, operate quietly.

-v, --verbose
When merging notes, be more verbose. When pruning notes, report all object names whose notes are
removed.

DISCUSSION
Commit notes are blobs containing extra information about an object (usually information to supplement a
commit’s message). These blobs are taken from notes refs. A notes ref is usually a branch which contains
"files" whose paths are the object names for the objects they describe, with some directory separators
included for performance reasons [1].

Every notes change creates a new commit at the specified notes ref. You can therefore inspect the history of
the notes by invoking, e.g., git log -p notes/commits. Currently the commit message only records which
operation triggered the update, and the commit authorship is determined according to the usual rules (see
git-commit(1)). These details may change in the future.

It is also permitted for a notes ref to point directly to a tree object, in which case the history of the notes can
be read with git log -p -g <refname>.

NOTES MERGE STRATEGIES
The default notes merge strategy is "manual", which checks out conflicting notes in a special work tree for
resolving notes conflicts (.git/NOTES_MERGE_WORKTREE), and instructs the user to resolve the
conflicts in that work tree. When done, the user can either finalize the merge with git notes merge
--commit, or abort the merge with git notes merge --abort.

Users may select an automated merge strategy from among the following using either -s/--strategy option
or configuring notes.mergeStrategy accordingly:

"ours" automatically resolves conflicting notes in favor of the local version (i.e. the current notes ref).

"theirs" automatically resolves notes conflicts in favor of the remote version (i.e. the given notes ref being
merged into the current notes ref).

"union" automatically resolves notes conflicts by concatenating the local and remote versions.

"cat_sort_uniq" is similar to "union", but in addition to concatenating the local and remote versions, this
strategy also sorts the resulting lines, and removes duplicate lines from the result. This is equivalent to

Git 2.20.1 06/26/2024 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-commit

GIT-NOTES(1) Git Manual GIT-NOTES(1)

applying the "cat | sort | uniq" shell pipeline to the local and remote versions. This strategy is useful if the
notes follow a line-based format where one wants to avoid duplicated lines in the merge result. Note that if
either the local or remote version contain duplicate lines prior to the merge, these will also be removed by
this notes merge strategy.

EXAMPLES
You can use notes to add annotations with information that was not available at the time a commit was
written.

$ git notes add -m 'Tested-by: Johannes Sixt <j6t@kdbg.org>' 72a144e2
$ git show -s 72a144e
[...]
Signed-off-by: Junio C Hamano <gitster@pobox.com>

Notes:
Tested-by: Johannes Sixt <j6t@kdbg.org>

In principle, a note is a regular Git blob, and any kind of (non-)format is accepted. You can binary-safely
create notes from arbitrary files using git hash-object:

$ cc *.c
$ blob=$(git hash-object -w a.out)
$ git notes --ref=built add --allow-empty -C "$blob" HEAD

(You cannot simply use git notes --ref=built add -F a.out HEAD because that is not binary-safe.) Of
course, it doesn’t make much sense to display non-text-format notes with git log, so if you use such notes,
you’ll probably need to write some special-purpose tools to do something useful with them.

CONFIGURATION
core.notesRef

Notes ref to read and manipulate instead of refs/notes/commits. Must be an unabbreviated ref name.
This setting can be overridden through the environment and command line.

notes.mergeStrategy
Which merge strategy to choose by default when resolving notes conflicts. Must be one of manual,
ours, theirs, union, or cat_sort_uniq. Defaults to manual. See "NOTES MERGE STRATEGIES"
section above for more information on each strategy.

This setting can be overridden by passing the --strategy option.

notes.<name>.mergeStrategy
Which merge strategy to choose when doing a notes merge into refs/notes/<name>. This overrides the
more general "notes.mergeStrategy". See the "NOTES MERGE STRATEGIES" section above for
more information on each available strategy.

notes.displayRef
Which ref (or refs, if a glob or specified more than once), in addition to the default set by
core.notesRef or GIT_NOTES_REF, to read notes from when showing commit messages with the
git log family of commands. This setting can be overridden on the command line or by the
GIT_NOTES_DISPLAY_REF environment variable. See git-log(1).

notes.rewrite.<command>
When rewriting commits with <command> (currently amend or rebase), if this variable is false, git
will not copy notes from the original to the rewritten commit. Defaults to true. See also
"notes.rewriteRef" below.

This setting can be overridden by the GIT_NOTES_REWRITE_REF environment variable.

notes.rewriteMode
When copying notes during a rewrite, what to do if the target commit already has a note. Must be one
of overwrite, concatenate, cat_sort_uniq, or ignore. Defaults to concatenate.

This setting can be overridden with the GIT_NOTES_REWRITE_MODE environment variable.

Git 2.20.1 06/26/2024 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git-log

GIT-NOTES(1) Git Manual GIT-NOTES(1)

notes.rewriteRef
When copying notes during a rewrite, specifies the (fully qualified) ref whose notes should be copied.
May be a glob, in which case notes in all matching refs will be copied. You may also specify this
configuration several times.

Does not have a default value; you must configure this variable to enable note rewriting.

Can be overridden with the GIT_NOTES_REWRITE_REF environment variable.

ENVIRONMENT
GIT_NOTES_REF

Which ref to manipulate notes from, instead of refs/notes/commits. This overrides the core.notesRef
setting.

GIT_NOTES_DISPLAY_REF
Colon-delimited list of refs or globs indicating which refs, in addition to the default from
core.notesRef or GIT_NOTES_REF, to read notes from when showing commit messages. This
overrides the notes.displayRef setting.

A warning will be issued for refs that do not exist, but a glob that does not match any refs is silently
ignored.

GIT_NOTES_REWRITE_MODE
When copying notes during a rewrite, what to do if the target commit already has a note. Must be one
of overwrite, concatenate, cat_sort_uniq, or ignore. This overrides the core.rewriteMode setting.

GIT_NOTES_REWRITE_REF
When rewriting commits, which notes to copy from the original to the rewritten commit. Must be a
colon-delimited list of refs or globs.

If not set in the environment, the list of notes to copy depends on the notes.rewrite.<command> and
notes.rewriteRef settings.

GIT
Part of the git(1) suite

NOTES
1. Permitted pathnames have the form ab/cd/ef/.../abcdef...: a sequence of directory names of two

hexadecimal digits each followed by a filename with the rest of the object ID.

Git 2.20.1 06/26/2024 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/git

	GIT-NOTES(1)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	SUBCOMMANDS
	SUBCOMMANDS

	OPTIONS
	OPTIONS

	DISCUSSION
	DISCUSSION

	NOTES MERGE STRATEGIES
	NOTES MERGE STRATEGIES

	EXAMPLES
	EXAMPLES

	CONFIGURATION
	CONFIGURATION

	ENVIRONMENT
	ENVIRONMENT

	GIT
	GIT

	NOTES
	NOTES

