PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

NAME

perlintern — autogenerated documentation of purely internal Perl functions

DESCRIPTION
This file is the autogenerated documentation of functions in the Perl interpreter that are documented using
Perl’s internal documentation format but are not marked as part of the Perl API. In other words, they are
not for use in extensions!

Compile-time scope hooks
BhkENTRY
NOTE: this function is experimental and may change or be removed without notice.

Return an entry from the BHK structure. which is a preprocessor token indicating which entry
to return. If the appropriate flag is not set this will return NULL. The type of the return value
depends on which entry you ask for.

void * BhkENTRY (BHK *hk, which)

BhkFLAGS
NOTE: this function is experimental and may change or be removed without notice.

Return the BHK’s flags.

u32 BhkFLAGS (BHK *hk)

CALL_BLOCK_HOOKS
NOTE: this function is experimental and may change or be removed without notice.

Call all the registered block hooks for type which. which is a preprocessing token; the type of
arg depends on which.

void CALL_BLOCK_HOOKS (which, arg)

Custom Operators
core_prototype
This function assigns the prototype of the named core function to sv, or to a new mortal SV if sv
is NULL. It returns the modified sv, or NULL if the core function has no prototype. code is a
code as returned by keyword (). It must not be equal to O.

SV * core_prototype (SV *sv, const char *name,
const int code,
int * const opnum)

CV Manipulation Functions
docatch Check for the cases 0 or 3 of cur_env.je_ret, only used inside an eval context.

0 is used as continue inside eval,
3 is used for a die caught by an inner eval — continue inner loop

See cop.h: je_mustcatch, when set at any runlevel to TRUE, means eval ops must establish a local
jmpenv to handle exception traps.

op* docatch (Perl_ppaddr_t firstpp)

CV reference counts and CvOUTSIDE
CvWEAKOUTSIDE
Each CV has a pointer, CvOUTSIDE (), to its lexically enclosing CV (if any). Because pointers
to anonymous sub prototypes are stored in & pad slots, it is a possible to get a circular reference,
with the parent pointing to the child and vice-versa. To avoid the ensuing memory leak, we do
not increment the reference count of the CV pointed to by CvOUTSIDE in the one specific
instance that the parent has a & pad slot pointing back to us. In this case, we set the
CVvWEAKOUTSIDE flag in the child. This allows us to determine under what circumstances we
should decrement the refcount of the parent when freeing the child.

perl v5.28.1 2020-07-21 1

PERLINTERN(1)

Perl Programmers Reference Guide PERLINTERN (1)

There is a further complication with non-closure anonymous subs (i.e. those that do not refer to
any lexicals outside that sub). In this case, the anonymous prototype is shared rather than being
cloned. This has the consequence that the parent may be freed while there are still active
children, e.g.,

BEGIN { $a = sub { eval '$x' } }

In this case, the BEGIN is freed immediately after execution since there are no active references to
it: the anon sub prototype has CYWEAKOUTSIDE set since it’s not a closure, and $a points to the
same CV, so it doesn’t contribute to BEGIN’s refcount either. When $a is executed, the eval
'$x ' causes the chain of CvOUTSIDESs to be followed, and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any & entries in the pad are
explicitly removed from the pad, and if the refcount of the pointed-to anon sub is still positive,
then that child’s CvOUTSIDE is set to point to its grandparent. This will only occur in the single
specific case of a non-closure anon prototype having one or more active references (such as $a
above).

One other thing to consider is that a CV may be merely undefined rather than freed, eg undef
&foo. In this case, its refcount may not have reached zero, but we still delete its pad and its
CvROOT etc. Since various children may still have their CvOUTSIDE pointing at this undefined
CV, we keep its own CvOUTSIDE for the time being, so that the chain of lexical scopes is
unbroken. For example, the following should print 123:

my $x = 123;

sub tmp { sub { eval '$x' } }
my Sa = tmp();

undef &tmp;

print S$a->();

bool CvWEAKOUTSIDE (CV *cv)

Embedding Functions

cv_dump

dump the contents of a CV

void cv_dump (CV *cv, const char *title)

cv_forget_slab

When a CV has a reference count on its slab (CvSLABBED), it is responsible for making sure it is
freed. (Hence, no two CVs should ever have a reference count on the same slab.) The CV only
needs to reference the slab during compilation. Once it is compiled and CvROOT attached, it has
finished its job, so it can forget the slab.

void cv_forget_slab (CV *cv)

do_dump_pad

Dump the contents of a padlist

void do_dump_pad(I32 level, PerlIO *file,
PADLIST *padlist, int full)

pad_alloc_name

perl v5.28.1

Allocates a place in the currently-compiling pad (via “pad_alloc” in perlapi) and then stores a
name for that entry. name is adopted and becomes the name entry; it must already contain the
name string. typestash and ourstash and the padadd_STATE flag get added to name.
None of the other processing of “pad_add_name_pvn™ in perlapi(1) is done. Returns the offset
of the allocated pad slot.

2020-07-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

PADOFFSET pad_alloc_name (PADNAME *name, U32 flags,
HV *typestash, HV *ourstash)

pad_block_start
Update the pad compilation state variables on entry to a new block.

void pad_block_start (int full)

pad_check_dup
Check for duplicate declarations: report any of:

* a 'my' in the current scope with the same name;
* an 'our' (anywhere in the pad) with the same name and the
same stash as 'ourstash'

is_our indicates that the name to check is an "our" declaration.

void pad_check_dup (PADNAME *name, U32 flags,
const HV *ourstash)

pad_findlex
Find a named lexical anywhere in a chain of nested pads. Add fake entries in the inner pads if it’s
found in an outer one.

Returns the offset in the bottom pad of the lex or the fake lex. cv is the CV in which to start the
search, and seq is the current cop_seq to match against. If warn is true, print appropriate
warnings. The out_* vars return values, and so are pointers to where the returned values should
be stored. out_capture, if non-null, requests that the innermost instance of the lexical is
captured; out_name is set to the innermost matched pad name or fake pad name; out_flags
returns the flags normally associated with the PARENT_FAKELEX_ FLAGS field of a fake pad
name.

Note that pad_findlex () is recursive; it recurses up the chain of CVs, then comes back
down, adding fake entries as it goes. It has to be this way because fake names in anon protoypes
have to store in xpadn_1low the index into the parent pad.

PADOFFSET pad_findlex (const char *namepv,
STRLEN namelen, U32 flags,
const CV* cv, U32 seq, int warn,
SV** out_capture,
PADNAME** out_name,
int *out_flags)

pad_fixup_inner_anons
For any anon CVs in the pad, change CvOUTSIDE of that CV from old_cv to new_cv if
necessary. Needed when a newly-compiled CV has to be moved to a pre-existing CV struct.

void pad_fixup_inner_anons (PADLIST *padlist,
CV *old_cv, CV *new_cv)

pad_free Free the SV at offset po in the current pad.
void pad_free (PADOFFSET po)

pad_leavemy
Cleanup at end of scope during compilation: set the max seq number for lexicals in this scope and
warn of any lexicals that never got introduced.

void pad_leavemy ()

padlist_dup
Duplicates a pad.

perl v5.28.1 2020-07-21 3

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

PADLIST * padlist_dup (PADLIST *srcpad,
CLONE_PARAMS *param)

padname_dup
Duplicates a pad name.

PADNAME * padname_dup (PADNAME *src, CLONE_PARAMS *param)

padnamelist_dup
Duplicates a pad name list.
PADNAMELIST * padnamelist_dup (PADNAMELIST *srcpad,
CLONE_PARAMS *param)

pad_push
Push a new pad frame onto the padlist, unless there’s already a pad at this depth, in which case
don’t bother creating a new one. Then give the new pad an @_ in slot zero.
void pad_push (PADLIST *padlist, int depth)
pad_reset
Mark all the current temporaries for reuse
void pad_reset ()
pad_swipe
Abandon the tmp in the current pad at offset po and replace with a new one.
void pad_swipe (PADOFFSET po, bool refadjust)

GV Functions
gv_try_downgrade
NOTE: this function is experimental and may change or be removed without notice.

If the typeglob gv can be expressed more succinctly, by having something other than a real GV in
its place in the stash, replace it with the optimised form. Basic requirements for this are that gv
is a real typeglob, is sufficiently ordinary, and is only referenced from its package. This function
is meant to be used when a GV has been looked up in part to see what was there, causing
upgrading, but based on what was found it turns out that the real GV isn’t required after all.

If gv is a completely empty typeglob, it is deleted from the stash.

If gv is a typeglob containing only a sufficiently-ordinary constant sub, the typeglob is replaced
with a scalar-reference placeholder that more compactly represents the same thing.

void gv_try_downgrade (GV* gv)

Hash Manipulation Functions
hv_ename_add
Adds a name to a stash’s internal list of effective names. See "hv_ename_delete".

This is called when a stash is assigned to a new location in the symbol table.

void hv_ename_add (HV *hv, const char *name, U32 len,
U32 flags)

hv_ename_delete
Removes a name from a stash’s internal list of effective names. If this is the name returned by
HvENAME, then another name in the list will take its place (HvENAME will use it).

This is called when a stash is deleted from the symbol table.

void hv_ename_delete (HV *hv, const char *name,
U32 len, U32 flags)

perl v5.28.1 2020-07-21 4

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

refcounted_he_chain_2hv
Generates and returns a HV * representing the content of a refcounted_he chain. flags is
currently unused and must be zero.

HV * refcounted_he_chain_2hv (
const struct refcounted_he *c, U32 flags

refcounted_he_fetch_pv
Like “refcounted_he_fetch_pvn”, but takes a nul-terminated string instead of a string/length pair.

SV * refcounted_he_fetch_pv(
const struct refcounted_he *chain,
const char *key, U32 hash, U32 flags

refcounted_he_fetch_pvn
Search along a refcounted_he chain for an entry with the key specified by keypv and
keylen. If flags has the REFCOUNTED_HE_KEY_UTF8 bit set, the key octets are
interpreted as UTF-8, otherwise they are interpreted as Latin—1. hash is a precomputed hash of
the key string, or zero if it has not been precomputed. Returns a mortal scalar representing the
value associated with the key, or &PL_sv_placeholder if there is no value associated with
the key.

SAVA refcounted_he_fetch pvn(
const struct refcounted_he *chain,
const char *keypv, STRLEN keylen, U32 hash,
U32 flags

refcounted_he_fetch_pvs
Like “refcounted_he_fetch_pvn”, but takes a literal string instead of a string/length pair, and no
precomputed hash.

SV * refcounted_he_fetch_pvs(
const struct refcounted_he *chain,
"literal string" key, U32 flags

refcounted_he_fetch_sv
Like “refcounted_he_fetch_pvn™, but takes a Perl scalar instead of a string/length pair.

SV * refcounted_he_fetch_sv(
const struct refcounted_he *chain, SV *key,
U32 hash, U32 flags

refcounted_he_free
Decrements the reference count of a refcounted_he by one. If the reference count reaches
zero the structure’s memory is freed, which (recursively) causes a reduction of its parent
refcounted_he’s reference count. It is safe to pass a null pointer to this function: no action
occurs in this case.

void refcounted_he_free(struct refcounted_he *he)

refcounted_he_inc
Increment the reference count of a refcounted_he. The pointer to the refcounted_he is
also returned. It is safe to pass a null pointer to this function: no action occurs and a null pointer
is returned.

perl v5.28.1 2020-07-21 5

PERLINTERN(1)

Perl Programmers Reference Guide PERLINTERN (1)

struct refcounted_he * refcounted_he_inc(
struct refcounted_he *he

refcounted_he_new_pv

Like “refcounted_he_new_pvn”, but takes a nul-terminated string instead of a string/length pair.

struct refcounted_he * refcounted_he_new_pv (
struct refcounted_he *parent,
const char *key, U32 hash,
SV *value, U32 flags

refcounted_he_new_pvn

Creates a new refcounted_he. This consists of a single key/value pair and a reference to an
existing refcounted_he chain (which may be empty), and thus forms a longer chain. When
using the longer chain, the new key/value pair takes precedence over any entry for the same key
further along the chain.

The new key is specified by keypv and keylen. If flags has the
REFCOUNTED_HE_KEY_UTFS8 bit set, the key octets are interpreted as UTF-8, otherwise they
are interpreted as Latin—1. hash is a precomputed hash of the key string, or zero if it has not
been precomputed.

value is the scalar value to store for this key. value is copied by this function, which thus
does not take ownership of any reference to it, and later changes to the scalar will not be reflected
in the value visible in the refcounted_he. Complex types of scalar will not be stored with
referential integrity, but will be coerced to strings. value may be either null or
&PL_sv_placeholder to indicate that no value is to be associated with the key; this, as with
any non-null value, takes precedence over the existence of a value for the key further along the
chain.

parent points to the rest of the refcounted_he chain to be attached to the new
refcounted_he. This function takes ownership of one reference to parent, and returns one
reference to the new refcounted_he.

struct refcounted_he * refcounted _he_new_pvn(
struct refcounted_he *parent,
const char *keypv,
STRLEN keylen, U32 hash,
SV *value, U32 flags

refcounted_he_new_pvs

Like “refcounted_he_new_pvn”, but takes a literal string instead of a string/length pair, and no
precomputed hash.

struct refcounted_he * refcounted _he_new_pvs(
struct refcounted_he *parent,
"literal string" key,
SV *value, U32 flags

refcounted_he_new_sv

perl v5.28.1

Like “refcounted_he_new_pvn”, but takes a Perl scalar instead of a string/length pair.

2020-07-21 6

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

struct refcounted_he * refcounted_he_new_sv(
struct refcounted_he *parent,
SV *key, U32 hash, SV *value,
U32 flags

10 Functions
start_glob
NOTE: this function is experimental and may change or be removed without notice.

Function called by do_readline to spawn a glob (or do the glob inside perl on VMS). This
code used to be inline, but now perl uses File: : G1lob this glob starter is only used by miniperl
during the build process, or when PERL_EXTERNAL_GLOB is defined. Moving it away shrinks
pp_hot.c; shrinking pp_hot.c helps speed perl up.

PerlIO* start_glob(SV *tmpglob, IO *io)

Lexer interface
validate_proto
NOTE: this function is experimental and may change or be removed without notice.

This function performs syntax checking on a prototype, proto. If warn is true, any illegal
characters or mismatched brackets will trigger illegalproto warnings, declaring that they were
detected in the prototype for name.

The return value is t rue if this is a valid prototype, and false if it is not, regardless of whether
warn was true or false.

Note that NULL is a valid proto and will always return t rue.
NOTE: the perl_ form of this function is deprecated.

bool validate_proto (SV *name, SV *proto, bool warn,
bool curstash)

Magical Functions
magic_clearhint
Triggered by a delete from % "H, records the key to PL._compiling.cop_hints_hash.

int magic_clearhint (SV* sv, MAGIC* mg)

magic_clearhints
Triggered by clearing % " H, resets PL._compiling.cop_hints_hash.

int magic_clearhints (SV* sv, MAGIC* mg)

magic_methcall
Invoke a magic method (like FETCH).

sv and mg are the tied thingy and the tie magic.

meth is the name of the method to call.

argc is the number of args (in addition to $sel1f) to pass to the method.
The f£lags can be:

G_DISCARD invoke method with G_DISCARD flag and don't
return a value

G_UNDEF_FILL fill the stack with argc pointers to
PL_sv_undef

The arguments themselves are any values following the f1ags argument.

Returns the SV (if any) returned by the method, or NULL on failure.

perl v5.28.1 2020-07-21 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/File::Glob

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

SV* magic_methcall (SV *sv, const MAGIC *mg,
SV *meth, U32 flags, U32 argc,
.)

magic_sethint
Triggered by a store to % H, records the key/value pair to
PL_compiling.cop_hints_hash. It is assumed that hints aren’t storing anything that
would need a deep copy. Maybe we should warn if we find a reference.

int magic_sethint (SV* sv, MAGIC* mg)

mg_localize
Copy some of the magic from an existing SV to new localized version of that SV. Container
magic (e.g., $ENV, $1, tie) gets copied, value magic doesn’t (e.g., taint, pos).

If setmagic is false then no set magic will be called on the new (empty) SV. This typically
means that assignment will soon follow (e.g. '1localA $xA =A $y'), and that will handle the
magic.

void mg_localize (SV* sv, SV* nsv, bool setmagic)

Miscellaneous Functions
free_c_backtrace
Deallocates a backtrace received from get_c_bracktrace.

void free_c_backtrace (Perl_c_backtrace* bt)

get_c_backtrace
Collects the backtrace (aka “‘stacktrace’) into a single linear malloced buffer, which the caller
must Perl_ free_c_backtrace().

Scans the frames back by depthA +A skip, then drops the skip innermost, returning at
most depth frames.

Perl_c_backtrace* get_c_backtrace (int max_depth,
int skip)

MRO Functions
mro_get_linear_isa_dfs
Returns the Depth-First Search linearization of @I SA the given stash. The return value is a read-
only AV*. level should be O (it is used internally in this function’s recursion).

You are responsible for SYREFCNT_inc () on the return value if you plan to store it anywhere
semi-permanently (otherwise it might be deleted out from under you the next time the cache is
invalidated).

AV* mro_get_linear_isa_dfs (HV* stash, U32 level)

mro_isa_changed_in
Takes the necessary steps (cache invalidations, mostly) when the @ISA of the given package has
changed. Invoked by the setisa magic, should not need to invoke directly.

void mro_isa_changed_in (HV* stash)

mro_package_moved
Call this function to signal to a stash that it has been assigned to another spot in the stash
hierarchy. stash is the stash that has been assigned. oldstash is the stash it replaces, if any.
gv is the glob that is actually being assigned to.

This can also be called with a null first argument to indicate that o1dstash has been deleted.

This function invalidates isa caches on the old stash, on all subpackages nested inside it, and on
the subclasses of all those, including non-existent packages that have corresponding entries in
stash.

perl v5.28.1 2020-07-21 8

PERLINTERN(1)

Perl Programmers Reference Guide PERLINTERN (1)

It also sets the effective names (HvENAME) on all the stashes as appropriate.

If the gv is present and is not in the symbol table, then this function simply returns. This
checked will be skipped if flags & 1.

void mro_package_moved (HV * const stash,
HV * const oldstash,
const GV * const gv,
U32 flags)

Optree Manipulation Functions
finalize_optree

This function finalizes the optree. Should be called directly after the complete optree is built. It
does some additional checking which can’t be done in the normal ck_xxx functions and makes
the tree thread-safe.

void finalize_optree (OP* 0)

newATTRSUB_x

perl v5.28.1

Construct a Perl subroutine, also performing some surrounding jobs.

This function is expected to be called in a Perl compilation context, and some aspects of the
subroutine are taken from global variables associated with compilation. In particular,
PL_compcv represents the subroutine that is currently being compiled. It must be non-null
when this function is called, and some aspects of the subroutine being constructed are taken from
it. The constructed subroutine may actually be a reuse of the PL_compcv object, but will not
necessarily be so.

If block is null then the subroutine will have no body, and for the time being it will be an error
to call it. This represents a forward subroutine declaration such as sub® foolA ($%);. If
block is non-null then it provides the Perl code of the subroutine body, which will be executed
when the subroutine is called. This body includes any argument unwrapping code resulting from
a subroutine signature or similar. The pad use of the code must correspond to the pad attached to
PL_compcv. The code is not expected to include a leavesub or leavesublv op; this
function will add such an op. block is consumed by this function and will become part of the
constructed subroutine.

proto specifies the subroutine’s prototype, unless one is supplied as an attribute (see below). If
proto is null, then the subroutine will not have a prototype. If proto is non-null, it must point
to a const op whose value is a string, and the subroutine will have that string as its prototype. If
a prototype is supplied as an attribute, the attribute takes precedence over proto, but in that case
proto should preferably be null. In any case, proto is consumed by this function.

attrs supplies attributes to be applied the subroutine. A handful of attributes take effect by
built-in means, being applied to PL_compcv immediately when seen. Other attributes are
collected up and attached to the subroutine by this route. attrs may be null to supply no
attributes, or point to a const op for a single attribute, or point to a 1ist op whose children
apart from the pushmark are const ops for one or more attributes. Each const op must be a
string, giving the attribute name optionally followed by parenthesised arguments, in the manner
in which attributes appear in Perl source. The attributes will be applied to the sub by this
function. attrs is consumed by this function.

If o_is_gv is false and o is null, then the subroutine will be anonymous. If o_is_gv is false
and o is non-null, then o must point to a const op, which will be consumed by this function,
and its string value supplies a name for the subroutine. The name may be qualified or
unqualified, and if it is unqualified then a default stash will be selected in some manner. If
o_1is_gv is true, then o doesn’t point to an OP at all, but is instead a cast pointer to a GV by
which the subroutine will be named.

If there is already a subroutine of the specified name, then the new sub will either replace the

2020-07-21 9

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

existing one in the glob or be merged with the existing one. A warning may be generated about
redefinition.

If the subroutine has one of a few special names, such as BEGIN or END, then it will be claimed
by the appropriate queue for automatic running of phase-related subroutines. In this case the
relevant glob will be left not containing any subroutine, even if it did contain one before. In the
case of BEGIN, the subroutine will be executed and the reference to it disposed of before this
function returns.

The function returns a pointer to the constructed subroutine. If the sub is anonymous then
ownership of one counted reference to the subroutine is transferred to the caller. If the sub is
named then the caller does not get ownership of a reference. In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned by virtue of being contained
in the glob that names it. A phase-named subroutine will usually be alive by virtue of the
reference owned by the phase’s automatic run queue. But a BEGIN subroutine, having already
been executed, will quite likely have been destroyed already by the time this function returns,
making it erroneous for the caller to make any use of the returned pointer. It is the caller’s
responsibility to ensure that it knows which of these situations applies.

cv * newATTRSUB_x (I32 floor, OP *o, OP *proto,
OP *attrs, OP *block, bool o_is_gv)

newXS_len_flags
Construct an XS subroutine, also performing some surrounding jobs.

The subroutine will have the entry point subaddr. It will have the prototype specified by the
nul-terminated string proto, or no prototype if proto is null. The prototype string is copied;
the caller can mutate the supplied string afterwards. If £ilename is non-null, it must be a nul-
terminated filename, and the subroutine will have its CvFILE set accordingly. By default
CvFILE is set to point directly to the supplied string, which must be static. If f1lags has the
XS_DYNAMIC_FILENAME bit set, then a copy of the string will be taken instead.

Other aspects of the subroutine will be left in their default state. If anything else needs to be done
to the subroutine for it to function correctly, it is the caller’s responsibility to do that after this
function has constructed it. However, beware of the subroutine potentially being destroyed
before this function returns, as described below.

If name is null then the subroutine will be anonymous, with its CvGV referring to an
__ANON_ _ glob. If name is non-null then the subroutine will be named accordingly,
referenced by the appropriate glob. name is a string of length len bytes giving a sigilless
symbol name, in UTF-8 if £lags has the SVf_UTF8 bit set and in Latin—1 otherwise. The
name may be either qualified or unqualified, with the stash defaulting in the same manner as for
gv_fetchpvn_flags. flags may contain flag bits understood by gv_fetchpvn_flags
with the same meaning as they have there, such as GV_ADDWARN. The symbol is always added
to the stash if necessary, with GV_ADDMULTI semantics.

If there is already a subroutine of the specified name, then the new sub will replace the existing
one in the glob. A warning may be generated about the redefinition. If the old subroutine was
CvCONST then the decision about whether to warn is influenced by an expectation about whether
the new subroutine will become a constant of similar value. That expectation is determined by
const_svp. (Note that the call to this function doesn’t make the new subroutine CvCONST in
any case; that is left to the caller.) If const_svp is null then it indicates that the new subroutine
will not become a constant. If const_svp is non-null then it indicates that the new subroutine
will become a constant, and it points to an SV* that provides the constant value that the
subroutine will have.

If the subroutine has one of a few special names, such as BEGIN or END, then it will be claimed
by the appropriate queue for automatic running of phase-related subroutines. In this case the
relevant glob will be left not containing any subroutine, even if it did contain one before. In the

perl v5.28.1 2020-07-21 10

PERLINTERN(1)

Perl Programmers Reference Guide PERLINTERN (1)

case of BEGIN, the subroutine will be executed and the reference to it disposed of before this
function returns, and also before its prototype is set. If a BEGIN subroutine would not be
sufficiently constructed by this function to be ready for execution then the caller must prevent this
happening by giving the subroutine a different name.

The function returns a pointer to the constructed subroutine. If the sub is anonymous then
ownership of one counted reference to the subroutine is transferred to the caller. If the sub is
named then the caller does not get ownership of a reference. In most such cases, where the sub
has a non-phase name, the sub will be alive at the point it is returned by virtue of being contained
in the glob that names it. A phase-named subroutine will usually be alive by virtue of the
reference owned by the phase’s automatic run queue. But a BEGIN subroutine, having already
been executed, will quite likely have been destroyed already by the time this function returns,
making it erroneous for the caller to make any use of the returned pointer. It is the caller’s
responsibility to ensure that it knows which of these situations applies.

cv * newXS_len_flags (const char *name, STRLEN len,
XSUBADDR_t subaddr,
const char *const filename,
const char *const proto,
SV **const_svp, U32 flags)

optimize_optree

This function applies some optimisations to the optree in top-down order. It is called before the
peephole optimizer, which processes ops in execution order. Note that finalize_optree() also does
a top-down scan, but is called *after* the peephole optimizer.

void optimize_optree (OP* o)

Pad Data Structures
CX_CURPAD_SAVE

Save the current pad in the given context block structure.

void CX_CURPAD_SAVE (struct context)

CX_CURPAD_SV

Access the SV at offset po in the saved current pad in the given context block structure (can be
used as an lvalue).

SV * CX_CURPAD_SV (struct context, PADOFFSET po)

PAD_BASE SV

Get the value from slot po in the base (DEPTH=1) pad of a padlist

SAVA PAD_BASE_SV (PADLIST padlist, PADOFFSET po)

PAD_CLONE_VARS

Clone the state variables associated with running and compiling pads.

void PAD_CLONE_VARS (PerlInterpreter *proto_perl,
CLONE_PARAMS* param)

PAD_COMPNAME_FLAGS

Return the flags for the current compiling pad name at offset po. Assumes a valid slot entry.

u32 PAD_COMPNAME_FLAGS (PADOFFSET po)

PAD_COMPNAME_GEN

The generation number of the name at offset po in the current compiling pad (Ivalue).

STRLEN PAD_COMPNAME_GEN (PADOFFSET po)

PAD_COMPNAME_GEN_set

perl v5.28.1

Sets the generation number of the name at offset po in the current ling pad (lvalue) to gen.
STRLEN PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

2020-07-21 11

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

PAD_COMPNAME_OURSTASH
Return the stash associated with an our variable. Assumes the slot entry is a valid our lexical.

HV * PAD_COMPNAME_OURSTASH (PADOFFSET po)

PAD_COMPNAME_PV
Return the name of the current compiling pad name at offset po. Assumes a valid slot entry.

char * PAD_COMPNAME_PV (PADOFFSET po)

PAD_COMPNAME_TYPE
Return the type (stash) of the current compiling pad name at offset po. Must be a valid name.
Returns null if not typed.

HV * PAD_COMPNAME_TYPE (PADOFFSET po)
PadnamelsOUR
Whether this is an “‘our” variable.
bool PadnameIsOUR (PADNAME pn)
PadnamelsSTATE
Whether this is a ““state’’ variable.
bool PadnameIsSTATE (PADNAME pn)
PadnameOURSTASH
The stash in which this “our’ variable was declared.
HV * PadnameOURSTASH ()
PadnameOUTER
Whether this entry belongs to an outer pad. Entries for which this is true are often referred to as
*fake’.
bool PadnameOUTER (PADNAME pn)
PadnameTYPE

The stash associated with a typed lexical. This returns the $Foo: : hash formy Foo $bar.
HV * PadnameTYPE (PADNAME pn)

PAD_RESTORE_LOCAL
Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL ()

void PAD_RESTORE_LOCAL (PAD *opad)

PAD_SAVE_LOCAL
Save the current pad to the local variable opad, then make the current pad equal to npad

void PAD_SAVE_LOCAL (PAD *opad, PAD *npad)

PAD_SAVE_SETNULLPAD
Save the current pad then set it to null.

void PAD_SAVE_SETNULLPAD ()

PAD_SETSV
Set the slot at offset po in the current pad to sv

SV * PAD_SETSV (PADOFFSET po, SV* sv)

PAD_SET _CUR
Set the current pad to be pad n in the padlist, saving the previous current pad. NB currently this
macro expands to a string too long for some compilers, so it’s best to replace it with

perl v5.28.1 2020-07-21 12

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

SAVECOMPPAD () ;
PAD_SET_CUR_NOSAVE (padlist,n);

void PAD_SET_CUR(PADLIST padlist, I32 n)

PAD_SET_CUR_NOSAVE
like PAD_SET_CUR, but without the save

void PAD_SET_CUR_NOSAVE (PADLIST padlist, I32 n)
PAD_SV Get the value at offset po in the current pad
SV * PAD_SV (PADOFFSET po)

PAD_SVI
Lightweight and lvalue version of PAD_SV. Get or set the value at offset po in the current pad.
Unlike PAD_ SV, does not print diagnostics with —DX. For internal use only.

SV * PAD_SV1 (PADOFFSET po)

SAVECLEARSV
Clear the pointed to pad value on scope exit. (i.e. the runtime action of my)

void SAVECLEARSV (SV **svp)

SAVECOMPPAD
save PL_comppad and PL_curpad

void SAVECOMPPAD ()

SAVEPADSV
Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET
void SAVEPADSV(PADOFFSET po)
Per-Interpreter Variables
PL_DBsingle
When Perl is run in debugging mode, with the —d switch, this SV is a boolean which indicates
whether subs are being single-stepped. Single-stepping is automatically turned on after every
step. This is the C variable which corresponds to Perl’s $DB::single variable. See
"PL_DBsub".

SV * PL_DBsingle

PL_DBsub
When Perl is run in debugging mode, with the —d switch, this GV contains the SV which holds
the name of the sub being debugged. This is the C variable which corresponds to Perl’s
$DB: : sub variable. See "PL_DBsingle".

GV * PL_DBsub

PL_DBtrace
Trace variable used when Perl is run in debugging mode, with the —d switch. This is the C
variable which corresponds to Perl’s $DB: : t race variable. See "PL_DBsingle".

SV * PL_DBtrace

PL_dowarn
The C variable that roughly corresponds to Perl’s $ "W warning variable. However, $ "W is treated
as a boolean, whereas PL_dowazrn is a collection of flag bits.

Us PL_dowarn

perl v5.28.1 2020-07-21 13

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

PL_last_in_gv
The GV which was last used for a filehandle input operation. (<FH>)

GV* PL_last_in_gv

PL_ofsgv
The glob containing the output field separator — *, in Perl space.

GV~ PL_ofsgv
PL_rs The input record separator — $/ in Perl space.
SV* PL_rs

Stack Manipulation Macros
djSp Declare Just SP. This is actually identical to dSP, and declares a local copy of perl’s stack
pointer, available via the SP macro. See "SP" in perlapi (1) (Available for backward
source code compatibility with the old (Perl 5.005) thread model.)

djsP;
LVRET True if this op will be the return value of an lvalue subroutine
SV-Body Allocation
SV_2num

NOTE: this function is experimental and may change or be removed without notice.

Return an SV with the numeric value of the source SV, doing any necessary reference or overload
conversion. The caller is expected to have handled get-magic already.

SV* sv_2num (SV *const sv)

SV Manipulation Functions
An SV (or AV, HV, etc.) is allocated in two parts: the head (struct sv, av, hv...) contains type and reference
count information, and for many types, a pointer to the body (struct xrv, Xpv, xpviv...), which contains fields
specific to each type. Some types store all they need in the head, so don’t have a body.

In all but the most memory-paranoid configurations (ex: PURIFY), heads and bodies are allocated out of
arenas, which by default are approximately 4K chunks of memory parcelled up into N heads or bodies. Sv-
bodies are allocated by their sv-type, guaranteeing size consistency needed to allocate safely from arrays.

For SV-heads, the first slot in each arena is reserved, and holds a link to the next arena, some flags, and a
note of the number of slots. Snaked through each arena chain is a linked list of free items; when this
becomes empty, an extra arena is allocated and divided up into N items which are threaded into the free list.

SV-bodies are similar, but they use arena-sets by default, which separate the link and info from the arena
itself, and reclaim the 1st slot in the arena. SV-bodies are further described later.

The following global variables are associated with arenas:

PL_sv_arenaroot pointer to list of SV arenas

PL_sv_root pointer to list of free SV structures
PL_body_arenas head of linked-list of body arenas

PL_body_roots][] array of pointers to list of free bodies of svtype

arrays are indexed by the svtype needed

A few special SV heads are not allocated from an arena, but are instead directly created in the interpreter
structure, eg PL_sv_undef. The size of arenas can be changed from the default by setting
PERL_ARENA_SIZE appropriately at compile time.

The SV arena serves the secondary purpose of allowing still-live SVs to be located and destroyed during
final cleanup.

At the lowest level, the macros new_SV() and del_SV() grab and free an SV head. (If debugging with
—DD, del_SV() calls the function S_del_sv() to return the SV to the free list with error checking.)

perl v5.28.1 2020-07-21 14

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

new_SV() calls more_sv() / sv_add_arena() to add an extra arena if the free list is empty. SVs in the free
list have their SVTYPE field set to all ones.

At the time of very final cleanup, sv_free_arenas() is called from perl_destruct() to physically free all the
arenas allocated since the start of the interpreter.

The function visit() scans the SV arenas list, and calls a specified function for each SV it finds which is still
live — ie which has an SVTYPE other than all 1’s, and a non-zero SVREFCNT. visit() is used by the
following functions (specified as [function that calls visit()] / [function called by visit() for each SV]):

sv_report_used() / do_report_used()
dump all remaining SVs (debugging aid)

sv_clean_objs () / do_clean_objs(),do_clean_named_objs (),
do_clean_named_io_obijs (),do_curse ()

Attempt to free all objects pointed to by RVs,
try to do the same for all objects indir-
ectly referenced by typeglobs too, and
then do a final sweep, cursing any
objects that remain. Called once from
perl_destruct (), prior to calling sv_clean_all()

below.

sv_clean_all() / do_clean_all()
SvREFCNT_dec (sv) each remaining SV, possibly
triggering an sv_free(). It also sets the

SVEf_BREAK flag on the SV to indicate that the
refcnt has been artificially lowered, and thus

stopping sv_free() from giving spurious warnings
about SVs which unexpectedly have a refcnt
of zero. <called repeatedly from perl_destruct ()

until there are no SVs left.

sv_add_arena
Given a chunk of memory, link it to the head of the list of arenas, and split it into a list of free
SVs.

void sv_add_arena (char *const ptr, const U32 size,
const U32 flags)

sv_clean_all
Decrement the refcnt of each remaining SV, possibly triggering a cleanup. This function may
have to be called multiple times to free SVs which are in complex self-referential hierarchies.

132 sv_clean_all ()

sv_clean_objs
Attempt to destroy all objects not yet freed.

void sv_clean_obijs ()

sv_free_arenas
Deallocate the memory used by all arenas. Note that all the individual SV heads and bodies
within the arenas must already have been freed.

void sv_free_arenas ()

SvTHINKFIRST
A quick flag check to see whether an sv should be passed to sv_force_normal to be
“downgraded” before SvIVX or SvPVX can be modified directly.

For example, if your scalar is a reference and you want to modify the SvIVX slot, you can’t just

perl v5.28.1 2020-07-21 15

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

do SVROK_off, as that will leak the referent.

This is used internally by various sv-modifying functions, such as sv_setsv, sv_setiv and
sv_pvn_force.

One case that this does not handle is a gv without SVFAKE set. After
if (SvTHINKFIRST (gv)) sv_force_normal (gv);
it will still be a gv.

SvTHINKFIRST sometimes produces false positives. In those cases sv_force_normal does
nothing.

U32 SVTHINKFIRST (SV *sv)
Unicode Support

find_uninit_var
NOTE: this function is experimental and may change or be removed without notice.

Find the name of the undefined variable (if any) that caused the operator to issue a “Use of
uninitialized value” warning. If match is true, only return a name if its value matches
uninit_sv. So roughly speaking, if a unary operator (such as OP_COS) generates a warning,
then following the direct child of the op may yield an OP_PADSV or OP_GV that gives the name
of the undefined variable. On the other hand, with OP_ADD there are two branches to follow, so
we only print the variable name if we get an exact match. desc_p points to a string pointer
holding the description of the op. This may be updated if needed.

The name is returned as a mortal SV.

Assumes that PL_op is the OP that originally triggered the error, and that
PL_comppad/PL_curpad points to the currently executing pad.

SV* find_uninit_var (const OP *const obase,
const SV *const uninit_sv,
bool match, const char **desc_p)

isSCRIPT_RUN
Returns a bool as to whether or not the sequence of bytes from s up to but not including send
form a “script run”. ut£f8_target is TRUE iff the sequence starting at s is to be treated as
UTF-8. To be precise, except for two degenerate cases given below, this function returns TRUE iff
all code points in it come from any combination of three *“scripts” given by the Unicode ““Script
Extensions” property: Common, Inherited, and possibly one other. Additionally all decimal
digits must come from the same consecutive sequence of 10.

For example, if all the characters in the sequence are Greek, or Common, or Inherited, this
function will return TRUE, provided any decimal digits in it are the ASCII digits “0”..“9”. For
scripts (unlike Greek) that have their own digits defined this will accept either digits from that set
or from 0..9, but not a combination of the two. Some scripts, such as Arabic, have more than one
set of digits. All digits must come from the same set for this function to return TRUE.

*ret_script, if ret_script is not NULL, will on return of TRUE contain the script found,
using the SCX_enum typedef. Its value will be SCX_INVALID if the function returns FALSE.

If the sequence is empty, TRUE is returned, but *ret_script (if asked for) will be
SCX_INVALID.

If the sequence contains a single code point which is unassigned to a character in the version of
Unicode being used, the function will return TRUE, and the script will be SCX_Unknown. Any
other combination of unassigned code points in the input sequence will result in the function
treating the input as not being a script run.

The returned script will be SCX_Inherited iff all the code points in it are from the Inherited

perl v5.28.1 2020-07-21 16

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

script.

Otherwise, the returned script will be SCX_Common iff all the code points in it are from the
Inherited or Common scripts.

bool isSCRIPT_RUN (const U8 *s, const U8 *send,
const bool utf8_target)

is_utf8_non_invariant_string
Returns TRUE if “is_utf8_invariant_string” in perlapi(1l) returns FALSE for the first 1en bytes of
the string s, but they are, nonetheless, legal Perl-extended UTF-8; otherwise returns FALSE.

A TRUE return means that at least one code point represented by the sequence either is a wide
character not representable as a single byte, or the representation differs depending on whether
the sequence is encoded in UTF-8 or not.

See also "is_utf8_invariant_string" in perlapi(l) "is_utf8_string"
in perlapi (1)

bool is_utf8_non_invariant_string(const U8* const s,
STRLEN len)

report_uninit
Print appropriate “Use of uninitialized variable” warning.

void report_uninit (const SV *uninit_sv)

variant_under_utf8_count
This function looks at the sequence of bytes between s and e, which are assumed to be encoded
in ASCII/Latinl, and returns how many of them would change should the string be translated into
UTF-8. Due to the nature of UTF-8, each of these would occupy two bytes instead of the single
one in the input string. Thus, this function returns the precise number of bytes the string would
expand by when translated to UTF-8.

Unlike most of the other functions that have ut £8 in their name, the input to this function is NOT
a UTF-8—encoded string. The function name is slightly odd to emphasize this.

This function is internal to Perl because khw thinks that any XS code that would want this is
probably operating too close to the internals. Presenting a valid use case could change that.

See also "is_utf8_invariant_string" in perlapi (1) and
"is_utf8_invariant_string_loc" in perlapi (1)

Size_t wvariant_under_utf8_count (const U8* const s,
const U8* const e)

Undocumented functions
The following functions are currently undocumented. If you use one of them, you may wish to consider
creating and submitting documentation for it.

PerlIO_restore_errno
PerllO_save_errno
PerlLIO_dup2_cloexec
PerlLIO_dup_cloexec
PerlLIO_open3_cloexec
PerlLIO_open_cloexec
PerlProc_pipe_cloexec
PerlSock_accept_cloexec
PerlSock_socket_cloexec
PerlSock_socketpair_cloexec

perl v5.28.1 2020-07-21 17

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi

PERLINTERN(1)

Slab_Alloc

Slab_Free

Slab_to_ro

Slab_to_rw
_add_range_to_invlist
_byte_dump_string
_core_swash_init
_get_regclass_nonbitmap_data
_get_swash_invlist
_inverse_folds

_invlistEQ
_invlist_array_init
_invlist_contains_cp
_invlist_dump
_invlist_intersection
_invlist_intersection_maybe_complement_2nd
_invlist_invert

_invlist_len
_invlist_populate_swatch
_invlist_search
_invlist_subtract
_invlist_union
_invlist_union_maybe_complement_2nd
_is_grapheme
_is_in_locale_category
_mem_collxfrm
_new_invlist
_new_invlist_C_array
_setup_canned_invlist
_swash_to_invlist
_to_fold_latinl
_to_upper_title_latinl
_warn_problematic_locale
abort_execution
add_cp_to_invlist
alloc_LOGOP
alloc_maybe_populate_ EXACT
allocmy
amagic_is_enabled
append_utf8_from_native_byte
apply

av_extend_guts
av_nonelem

av_reify

bind_match
boot_core_PerllIO
boot_core_ UNIVERSAL
boot_core_mro

cando

check_utf8_print
ck_anoncode

ck_backtick

perl v5.28.1 2020-07-21

Perl Programmers Reference Guide

PERLINTERN(1)

18

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

ck_bitop
ck_cmp
ck_concat
ck_defined
ck_delete
ck_each
ck_entersub_args_core
ck_eof

ck_eval
ck_exec
ck_exists
ck_ftst

ck_fun
ck_glob
ck_grep
ck_index
ck_join
ck_length
ck_Ifun
ck_listiob
ck_match
ck_method
ck_null
ck_open
ck_prototype
ck_readline
ck_refassign
ck_repeat
ck_require
ck_return
ck_rfun
ck_rvconst
ck_sassign
ck_select
ck_shift
ck_smartmatch
ck_sort
ck_spair
ck_split
ck_stringify
ck_subr
ck_substr
ck_svconst
ck_tell
ck_trunc
closest_cop
compute_ EXACTish
coresub_op
create_eval_scope
croak_caller
croak_no_mem
croak_popstack

perl v5.28.1 2020-07-21 19

PERLINTERN(1)

current_re_engine
custom_op_get_field
cv_ckproto_len_flags
cv_clone_into
cv_const_sv_or_av
cv_undef_flags
cvgv_from_hek
cvgv_set
cvstash_set
deb_stack_all
defelem_target
delete_eval_scope
delimcpy_no_escape
die_unwind
do_aexec
do_aexec5

do_eof

do_exec

do_exec3

do_ipcctl

do_ipcget
do_msgrcv
do_msgsnd
do_ncmp

do_open6
do_open_raw
do_print
do_readline
do_seek

do_semop
do_shmio
do_sysseek

do_tell

do_trans

do_vecget
do_vecset

do_vop
does_utf8_overflow
dofile
drand48_init_r
drand48_r
dtrace_probe_call
dtrace_probe_load
dtrace_probe_op
dtrace_probe_phase
dump_all_perl
dump_packsubs_perl
dump_sub_perl
dump_sv_child
emulate_cop_io
feature_is_enabled
find_lexical_cv

perl v5.28.1 2020-07-21

Perl Programmers Reference Guide

PERLINTERN(1)

20

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

find_runcv_where
find_script
form_short_octal_warning
free_tied_hv_pool
get_db_sub
get_debug_opts
get_hash_seed
get_invlist_iter_addr
get_invlist_offset_addr
get_invlist_previous_index_addr
get_no_modify
get_opargs

get_re_arg

getenv_len
grok_atoUV
grok_bslash_c
grok_bslash_o
grok_bslash_x
gv_fetchmeth_internal
gv_override

gv_setref
gv_stashpvn_internal
gv_stashsvpvn_cached
handle_named_backref
hfree_next_entry
hv_backreferences_p
hv_kill_backrefs
hv_placeholders_p
hv_pushkv
hv_undef_flags
init_argv_symbols
init_constants
init_dbargs
init_debugger
init_named_cv
init_uniprops

invert

invlist_array
invlist_clear
invlist_clone
invlist_highest
invlist_is_iterating
invlist_iterfinish
invlist_iterinit
invlist_max
invlist_previous_index
invlist_set_len
invlist_set_previous_index
invlist_trim

i0_close
isFF_OVERLONG
isFOO_Ic

perl v5.28.1 2020-07-21 21

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

is_utf8_common
is_utf8_common_with_len
is_utf8_overlong_given_start_byte_ok
isinfnansv

jmaybe

keyword
keyword_plugin_standard
list

localize
magic_clear_all_env
magic_cleararylen_p
magic_clearenv
magic_clearisa
magic_clearpack
magic_clearsig
magic_copycallchecker
magic_existspack
magic_{freearylen_p
magic_freeovrld
magic_get
magic_getarylen
magic_getdebugvar
magic_getdefelem
magic_getnkeys
magic_getpack
magic_getpos
magic_getsig
magic_getsubstr
magic_gettaint
magic_getuvar
magic_getvec
magic_killbackrefs
magic_nextpack
magic_regdata_cnt
magic_regdatum_get
magic_regdatum_set
magic_scalarpack
magic_set
magic_set_all_env
magic_setarylen
magic_setcollxfrm
magic_setdbline
magic_setdebugvar
magic_setdefelem
magic_setenv
magic_setisa
magic_setlvref
magic_setmglob
magic_setnkeys
magic_setnonelem
magic_setpack
magic_setpos

perl v5.28.1 2020-07-21 22

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

magic_setregexp
magic_setsig
magic_setsubstr
magic_settaint
magic_setutf8
magic_setuvar
magic_setvec
magic_sizepack
magic_wipepack
malloc_good_size
malloced_size
mem_collxfrm
mem_log_alloc
mem_log_free
mem_log_realloc
mg_find_mglob
mode_from_discipline
more_bodies
mro_meta_dup
mro_meta_init
multiconcat_stringify
multideref_stringify
my_attrs
my_clearenv
my_lstat_flags
my_memrchr
my_mkostemp
my_mkstemp
my_mkstemp_cloexec
my_stat_flags
my_strerror
my_unexec

newGP
newMETHOP_internal
newSTUB
newSVavdefelem
newXS_deffile
new_warnings_bitfield
nextargv

noperl_die
notify_parser_that_changed_to_utf8
00psAV

oopsHV

op_clear
op_integerize
op_lvalue_flags
op_refent_dec
op_refent_inc
op_relocate_sv
op_std_init
op_unscope
opmethod_stash

perl v5.28.1 2020-07-21 23

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

opslab_force_free
opslab_free
opslab_free_nopad
package
package_version
pad_add_weakref
padlist_store
padname_free
padnamelist_free
parse_unicode_opts
parse_uniprop_string
parser_free
parser_free_nexttoke_ops
path_is_searchable

peep

pmruntime

populate_isa

ptr_hash

gerror

re_exec_indentf
re_indentf
re_op_compile
re_printf
reg_named_buff
reg_named_buff_iter
reg_numbered_buff_fetch
reg_numbered_buff_length
reg_numbered_buff_store
reg_qr_package
reg_skipcomment
reg_temp_copy

regcurly

regprop

report_evil_fh
report_redefined_cv
report_wrongway_th
rpeep

rsignal_restore
rsignal_save

rxres_save

same_dirent

save_strlen
save_to_buffer
sawparens

scalar

scalarvoid

set_caret_X
set_numeric_standard
set_numeric_underlying
set_padlist
setfd_cloexec
setfd_cloexec_for_nonsysfd

perl v5.28.1 2020-07-21 24

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

setfd_cloexec_or_inhexec_by_sysfdness
setfd_inhexec
setfd_inhexec_for_sysfd
should_warn_nl
sighandler

softref2xv
ssc_add_range
ssc_clear_locale
ssc_cp_and
ssc_intersection
SSC_union
sub_crush_depth
sv_add_backref
sv_buf_to_ro
sv_del_backref
sv_free2
sv_kill_backrefs
sv_len_utf§_nomg
sv_magicext_mglob
sv_mortalcopy_flags
sv_only_taint_gmagic
Sv_or_pv_pos_u2b
sv_resetpvn

sv_sethek
SV_setsv_cow
sv_unglob
swash_fetch
swash_init
tied_method
tmps_grow_p
translate_substr_offsets
try_amagic_bin
try_amagic_un
unshare_hek
utf16_to_utf8
utf16_to_utf8_reversed
utilize

varname
vivify_defelem
vivify_ref

waitdpid
was_lvalue_sub

watch
win32_croak_not_implemented
write_to_stderr
xs_boot_epilog
xs_handshake

yyerror

yyerror_pv
yyerror_pvn

yylex

yyparse

perl v5.28.1 2020-07-21 25

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN (1)

yyquit
yyunlex

AUTHORS
The autodocumentation system was originally added to the Perl core by Benjamin Stuhl. Documentation is
by whoever was kind enough to document their functions.

SEE ALSO
perlguts(1), perlapi(1)

perl v5.28.1 2020-07-21 26

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlguts
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlapi

	PERLINTERN(1)
	NAME
	NAME

	DESCRIPTION
	DESCRIPTION

	Compile-time scope hooks
	Compile-time scope hooks
	BhkENTRY
	BhkFLAGS
	CALL_BLOCK_HOOKS

	Custom Operators
	Custom Operators
	core_prototype

	CV Manipulation Functions
	CV Manipulation Functions
	docatch

	CV reference counts and CvOUTSIDE
	CV reference counts and CvOUTSIDE
	CvWEAKOUTSIDE

	Embedding Functions
	Embedding Functions
	cv_dump
	cv_forget_slab
	do_dump_pad
	pad_alloc_name
	pad_block_start
	pad_check_dup
	pad_findlex
	pad_fixup_inner_anons
	pad_free
	pad_leavemy
	padlist_dup
	padname_dup
	padnamelist_dup
	pad_push
	pad_reset
	pad_swipe

	GV Functions
	GV Functions
	gv_try_downgrade

	Hash Manipulation Functions
	Hash Manipulation Functions
	hv_ename_add
	hv_ename_delete
	refcounted_he_chain_2hv
	refcounted_he_fetch_pv
	refcounted_he_fetch_pvn
	refcounted_he_fetch_pvs
	refcounted_he_fetch_sv
	refcounted_he_free
	refcounted_he_inc
	refcounted_he_new_pv
	refcounted_he_new_pvn
	refcounted_he_new_pvs
	refcounted_he_new_sv

	IO Functions
	IO Functions
	start_glob

	Lexer interface
	Lexer interface
	validate_proto

	Magical Functions
	Magical Functions
	magic_clearhint
	magic_clearhints
	magic_methcall
	magic_sethint
	mg_localize

	Miscellaneous Functions
	Miscellaneous Functions
	free_c_backtrace
	get_c_backtrace

	MRO Functions
	MRO Functions
	mro_get_linear_isa_dfs
	mro_isa_changed_in
	mro_package_moved

	Optree Manipulation Functions
	Optree Manipulation Functions
	finalize_optree
	newATTRSUB_x
	newXS_len_flags
	optimize_optree

	Pad Data Structures
	Pad Data Structures
	CX_CURPAD_SAVE
	CX_CURPAD_SV
	PAD_BASE_SV
	PAD_CLONE_VARS
	PAD_COMPNAME_FLAGS
	PAD_COMPNAME_GEN
	PAD_COMPNAME_GEN_set
	PAD_COMPNAME_OURSTASH
	PAD_COMPNAME_PV
	PAD_COMPNAME_TYPE
	PadnameIsOUR
	PadnameIsSTATE
	PadnameOURSTASH
	PadnameOUTER
	PadnameTYPE
	PAD_RESTORE_LOCAL
	PAD_SAVE_LOCAL
	PAD_SAVE_SETNULLPAD
	PAD_SETSV
	PAD_SET_CUR
	PAD_SET_CUR_NOSAVE
	PAD_SV
	PAD_SVl
	SAVECLEARSV
	SAVECOMPPAD
	SAVEPADSV

	Per-Interpreter Variables
	Per-Interpreter Variables
	PL_DBsingle
	PL_DBsub
	PL_DBtrace
	PL_dowarn
	PL_last_in_gv
	PL_ofsgv
	PL_rs

	Stack Manipulation Macros
	Stack Manipulation Macros
	djSP
	LVRET

	SV-Body Allocation
	SV-Body Allocation
	sv_2num

	SV Manipulation Functions
	SV Manipulation Functions
	sv_add_arena
	sv_clean_all
	sv_clean_objs
	sv_free_arenas
	SvTHINKFIRST

	Unicode Support
	Unicode Support
	find_uninit_var
	isSCRIPT_RUN
	is_utf8_non_invariant_string
	report_uninit
	variant_under_utf8_count

	Undocumented functions
	Undocumented functions
	PerlIO_restore_errno
	PerlIO_save_errno
	PerlLIO_dup2_cloexec
	PerlLIO_dup_cloexec
	PerlLIO_open3_cloexec
	PerlLIO_open_cloexec
	PerlProc_pipe_cloexec
	PerlSock_accept_cloexec
	PerlSock_socket_cloexec
	PerlSock_socketpair_cloexec
	Slab_Alloc
	Slab_Free
	Slab_to_ro
	Slab_to_rw
	_add_range_to_invlist
	_byte_dump_string
	_core_swash_init
	_get_regclass_nonbitmap_data
	_get_swash_invlist
	_inverse_folds
	_invlistEQ
	_invlist_array_init
	_invlist_contains_cp
	_invlist_dump
	_invlist_intersection
	_invlist_intersection_maybe_complement_2nd
	_invlist_invert
	_invlist_len
	_invlist_populate_swatch
	_invlist_search
	_invlist_subtract
	_invlist_union
	_invlist_union_maybe_complement_2nd
	_is_grapheme
	_is_in_locale_category
	_mem_collxfrm
	_new_invlist
	_new_invlist_C_array
	_setup_canned_invlist
	_swash_to_invlist
	_to_fold_latin1
	_to_upper_title_latin1
	_warn_problematic_locale
	abort_execution
	add_cp_to_invlist
	alloc_LOGOP
	alloc_maybe_populate_EXACT
	allocmy
	amagic_is_enabled
	append_utf8_from_native_byte
	apply
	av_extend_guts
	av_nonelem
	av_reify
	bind_match
	boot_core_PerlIO
	boot_core_UNIVERSAL
	boot_core_mro
	cando
	check_utf8_print
	ck_anoncode
	ck_backtick
	ck_bitop
	ck_cmp
	ck_concat
	ck_defined
	ck_delete
	ck_each
	ck_entersub_args_core
	ck_eof
	ck_eval
	ck_exec
	ck_exists
	ck_ftst
	ck_fun
	ck_glob
	ck_grep
	ck_index
	ck_join
	ck_length
	ck_lfun
	ck_listiob
	ck_match
	ck_method
	ck_null
	ck_open
	ck_prototype
	ck_readline
	ck_refassign
	ck_repeat
	ck_require
	ck_return
	ck_rfun
	ck_rvconst
	ck_sassign
	ck_select
	ck_shift
	ck_smartmatch
	ck_sort
	ck_spair
	ck_split
	ck_stringify
	ck_subr
	ck_substr
	ck_svconst
	ck_tell
	ck_trunc
	closest_cop
	compute_EXACTish
	coresub_op
	create_eval_scope
	croak_caller
	croak_no_mem
	croak_popstack
	current_re_engine
	custom_op_get_field
	cv_ckproto_len_flags
	cv_clone_into
	cv_const_sv_or_av
	cv_undef_flags
	cvgv_from_hek
	cvgv_set
	cvstash_set
	deb_stack_all
	defelem_target
	delete_eval_scope
	delimcpy_no_escape
	die_unwind
	do_aexec
	do_aexec5
	do_eof
	do_exec
	do_exec3
	do_ipcctl
	do_ipcget
	do_msgrcv
	do_msgsnd
	do_ncmp
	do_open6
	do_open_raw
	do_print
	do_readline
	do_seek
	do_semop
	do_shmio
	do_sysseek
	do_tell
	do_trans
	do_vecget
	do_vecset
	do_vop
	does_utf8_overflow
	dofile
	drand48_init_r
	drand48_r
	dtrace_probe_call
	dtrace_probe_load
	dtrace_probe_op
	dtrace_probe_phase
	dump_all_perl
	dump_packsubs_perl
	dump_sub_perl
	dump_sv_child
	emulate_cop_io
	feature_is_enabled
	find_lexical_cv
	find_runcv_where
	find_script
	form_short_octal_warning
	free_tied_hv_pool
	get_db_sub
	get_debug_opts
	get_hash_seed
	get_invlist_iter_addr
	get_invlist_offset_addr
	get_invlist_previous_index_addr
	get_no_modify
	get_opargs
	get_re_arg
	getenv_len
	grok_atoUV
	grok_bslash_c
	grok_bslash_o
	grok_bslash_x
	gv_fetchmeth_internal
	gv_override
	gv_setref
	gv_stashpvn_internal
	gv_stashsvpvn_cached
	handle_named_backref
	hfree_next_entry
	hv_backreferences_p
	hv_kill_backrefs
	hv_placeholders_p
	hv_pushkv
	hv_undef_flags
	init_argv_symbols
	init_constants
	init_dbargs
	init_debugger
	init_named_cv
	init_uniprops
	invert
	invlist_array
	invlist_clear
	invlist_clone
	invlist_highest
	invlist_is_iterating
	invlist_iterfinish
	invlist_iterinit
	invlist_max
	invlist_previous_index
	invlist_set_len
	invlist_set_previous_index
	invlist_trim
	io_close
	isFF_OVERLONG
	isFOO_lc
	is_utf8_common
	is_utf8_common_with_len
	is_utf8_overlong_given_start_byte_ok
	isinfnansv
	jmaybe
	keyword
	keyword_plugin_standard
	list
	localize
	magic_clear_all_env
	magic_cleararylen_p
	magic_clearenv
	magic_clearisa
	magic_clearpack
	magic_clearsig
	magic_copycallchecker
	magic_existspack
	magic_freearylen_p
	magic_freeovrld
	magic_get
	magic_getarylen
	magic_getdebugvar
	magic_getdefelem
	magic_getnkeys
	magic_getpack
	magic_getpos
	magic_getsig
	magic_getsubstr
	magic_gettaint
	magic_getuvar
	magic_getvec
	magic_killbackrefs
	magic_nextpack
	magic_regdata_cnt
	magic_regdatum_get
	magic_regdatum_set
	magic_scalarpack
	magic_set
	magic_set_all_env
	magic_setarylen
	magic_setcollxfrm
	magic_setdbline
	magic_setdebugvar
	magic_setdefelem
	magic_setenv
	magic_setisa
	magic_setlvref
	magic_setmglob
	magic_setnkeys
	magic_setnonelem
	magic_setpack
	magic_setpos
	magic_setregexp
	magic_setsig
	magic_setsubstr
	magic_settaint
	magic_setutf8
	magic_setuvar
	magic_setvec
	magic_sizepack
	magic_wipepack
	malloc_good_size
	malloced_size
	mem_collxfrm
	mem_log_alloc
	mem_log_free
	mem_log_realloc
	mg_find_mglob
	mode_from_discipline
	more_bodies
	mro_meta_dup
	mro_meta_init
	multiconcat_stringify
	multideref_stringify
	my_attrs
	my_clearenv
	my_lstat_flags
	my_memrchr
	my_mkostemp
	my_mkstemp
	my_mkstemp_cloexec
	my_stat_flags
	my_strerror
	my_unexec
	newGP
	newMETHOP_internal
	newSTUB
	newSVavdefelem
	newXS_deffile
	new_warnings_bitfield
	nextargv
	noperl_die
	notify_parser_that_changed_to_utf8
	oopsAV
	oopsHV
	op_clear
	op_integerize
	op_lvalue_flags
	op_refcnt_dec
	op_refcnt_inc
	op_relocate_sv
	op_std_init
	op_unscope
	opmethod_stash
	opslab_force_free
	opslab_free
	opslab_free_nopad
	package
	package_version
	pad_add_weakref
	padlist_store
	padname_free
	padnamelist_free
	parse_unicode_opts
	parse_uniprop_string
	parser_free
	parser_free_nexttoke_ops
	path_is_searchable
	peep
	pmruntime
	populate_isa
	ptr_hash
	qerror
	re_exec_indentf
	re_indentf
	re_op_compile
	re_printf
	reg_named_buff
	reg_named_buff_iter
	reg_numbered_buff_fetch
	reg_numbered_buff_length
	reg_numbered_buff_store
	reg_qr_package
	reg_skipcomment
	reg_temp_copy
	regcurly
	regprop
	report_evil_fh
	report_redefined_cv
	report_wrongway_fh
	rpeep
	rsignal_restore
	rsignal_save
	rxres_save
	same_dirent
	save_strlen
	save_to_buffer
	sawparens
	scalar
	scalarvoid
	set_caret_X
	set_numeric_standard
	set_numeric_underlying
	set_padlist
	setfd_cloexec
	setfd_cloexec_for_nonsysfd
	setfd_cloexec_or_inhexec_by_sysfdness
	setfd_inhexec
	setfd_inhexec_for_sysfd
	should_warn_nl
	sighandler
	softref2xv
	ssc_add_range
	ssc_clear_locale
	ssc_cp_and
	ssc_intersection
	ssc_union
	sub_crush_depth
	sv_add_backref
	sv_buf_to_ro
	sv_del_backref
	sv_free2
	sv_kill_backrefs
	sv_len_utf8_nomg
	sv_magicext_mglob
	sv_mortalcopy_flags
	sv_only_taint_gmagic
	sv_or_pv_pos_u2b
	sv_resetpvn
	sv_sethek
	sv_setsv_cow
	sv_unglob
	swash_fetch
	swash_init
	tied_method
	tmps_grow_p
	translate_substr_offsets
	try_amagic_bin
	try_amagic_un
	unshare_hek
	utf16_to_utf8
	utf16_to_utf8_reversed
	utilize
	varname
	vivify_defelem
	vivify_ref
	wait4pid
	was_lvalue_sub
	watch
	win32_croak_not_implemented
	write_to_stderr
	xs_boot_epilog
	xs_handshake
	yyerror
	yyerror_pv
	yyerror_pvn
	yylex
	yyparse
	yyquit
	yyunlex

	AUTHORS
	AUTHORS

	SEE ALSO
	SEE ALSO

