
XZ (1) XZ Utils XZ (1)

NAME
xz, unxz, xzcat, lzma, unlzma, lzcat - Compress or decompress .xz and .lzma files

SYNOPSIS
xz [option...] [file...]

COMMAND ALIASES
unxz is equivalent to xz --decompress.
xzcat is equivalent to xz --decompress --stdout.
lzma is equivalent to xz --format=lzma.
unlzma is equivalent to xz --format=lzma --decompress.
lzcat is equivalent to xz --format=lzma --decompress --stdout.

When writing scripts that need to decompress files, it is recommended to always use the name xz with ap-
propriate arguments (xz -d or xz -dc) instead of the names unxz and xzcat.

DESCRIPTION
xz is a general-purpose data compression tool with command line syntax similar to gzip(1) and bzip2(1).
The native file format is the .xz format, but the legacy .lzma format used by LZMA Utils and raw com-
pressed streams with no container format headers are also supported.

xz compresses or decompresses each file according to the selected operation mode. If no files are given or
file is -, xz reads from standard input and writes the processed data to standard output. xz will refuse (dis-
play an error and skip the file) to write compressed data to standard output if it is a terminal. Similarly, xz
will refuse to read compressed data from standard input if it is a terminal.

Unless --stdout is specified, files other than - are written to a new file whose name is derived from the
source file name:

• When compressing, the suffix of the target file format (.xz or .lzma) is appended to the source filename
to get the target filename.

• When decompressing, the .xz or .lzma suffix is removed from the filename to get the target filename.
xz also recognizes the suffixes .txz and .tlz, and replaces them with the .tar suffix.

If the target file already exists, an error is displayed and the file is skipped.

Unless writing to standard output, xz will display a warning and skip the file if any of the following ap-
plies:

• File is not a regular file. Symbolic links are not followed, and thus they are not considered to be regular
files.

• File has more than one hard link.

• File has setuid, setgid, or sticky bit set.

• The operation mode is set to compress and the file already has a suffix of the target file format (.xz or
.txz when compressing to the .xz format, and .lzma or .tlz when compressing to the .lzma format).

• The operation mode is set to decompress and the file doesn’t have a suffix of any of the supported file
formats (.xz, .txz, .lzma, or .tlz).

After successfully compressing or decompressing the file, xz copies the owner, group, permissions, access
time, and modification time from the source file to the target file. If copying the group fails, the permis-
sions are modified so that the target file doesn’t become accessible to users who didn’t have permission to
access the source file. xz doesn’t support copying other metadata like access control lists or extended at-
tributes yet.

Once the target file has been successfully closed, the source file is removed unless --keep was specified.
The source file is never removed if the output is written to standard output.

Sending SIGINFO or SIGUSR1 to the xz process makes it print progress information to standard error.
This has only limited use since when standard error is a terminal, using --verbose will display an automat-
ically updating progress indicator.

Tukaani 2017-04-19 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bzip2

XZ (1) XZ Utils XZ (1)

Memory usage
The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending on the com-
pression settings. The settings used when compressing a file determine the memory requirements of the de-
compressor. Typically the decompressor needs 5 % to 20 % of the amount of memory that the compressor
needed when creating the file. For example, decompressing a file created with xz -9 currently requires
65 MiB of memory. Still, it is possible to have .xz files that require several gigabytes of memory to decom-
press.

Especially users of older systems may find the possibility of very large memory usage annoying. To pre-
vent uncomfortable surprises, xz has a built-in memory usage limiter, which is disabled by default. While
some operating systems provide ways to limit the memory usage of processes, relying on it wasn’t deemed
to be flexible enough (e.g. using ulimit(1) to limit virtual memory tends to cripple mmap(2)).

The memory usage limiter can be enabled with the command line option --memlimit=limit. Often it is
more convenient to enable the limiter by default by setting the environment variable XZ_DEFAULTS, e.g.
XZ_DEFAULTS=--memlimit=150MiB. It is possible to set the limits separately for compression and
decompression by using --memlimit-compress=limit and --memlimit-decompress=limit. Using these
two options outside XZ_DEFAULTS is rarely useful because a single run of xz cannot do both compres-
sion and decompression and --memlimit=limit (or -M limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing, xz will display an error and decom-
pressing the file will fail. If the limit is exceeded when compressing, xz will try to scale the settings down
so that the limit is no longer exceeded (except when using --format=raw or --no-adjust). This way the
operation won’t fail unless the limit is very small. The scaling of the settings is done in steps that don’t
match the compression level presets, e.g. if the limit is only slightly less than the amount required for xz
-9, the settings will be scaled down only a little, not all the way down to xz -8.

Concatenation and padding with .xz files
It is possible to concatenate .xz files as is. xz will decompress such files as if they were a single .xz file.

It is possible to insert padding between the concatenated parts or after the last part. The padding must con-
sist of null bytes and the size of the padding must be a multiple of four bytes. This can be useful e.g. if the
.xz file is stored on a medium that measures file sizes in 512-byte blocks.

Concatenation and padding are not allowed with .lzma files or raw streams.

OPTIONS
Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily indicate
large integers. There must be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2ˆ10). Ki, k, kB, K, and KB are accepted as synonyms for KiB.

MiB Multiply the integer by 1,048,576 (2ˆ20). Mi, m, M, and MB are accepted as synonyms for MiB.

GiB Multiply the integer by 1,073,741,824 (2ˆ30). Gi, g, G, and GB are accepted as synonyms for
GiB.

The special value max can be used to indicate the maximum integer value supported by the option.

Operation mode
If multiple operation mode options are given, the last one takes effect.

-z, --compress
Compress. This is the default operation mode when no operation mode option is specified and no
other operation mode is implied from the command name (for example, unxz implies --decom-
press).

-d, --decompress, --uncompress
Decompress.

Tukaani 2017-04-19 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap

XZ (1) XZ Utils XZ (1)

-t, --test
Test the integrity of compressed files. This option is equivalent to --decompress --stdout ex-
cept that the decompressed data is discarded instead of being written to standard output. No files
are created or removed.

-l, --list
Print information about compressed files. No uncompressed output is produced, and no files are
created or removed. In list mode, the program cannot read the compressed data from standard in-
put or from other unseekable sources.

The default listing shows basic information about files, one file per line. To get more detailed in-
formation, use also the --verbose option. For even more information, use --verbose twice, but
note that this may be slow, because getting all the extra information requires many seeks. The
width of verbose output exceeds 80 characters, so piping the output to e.g. less -S may be conve-
nient if the terminal isn’t wide enough.

The exact output may vary between xz versions and different locales. For machine-readable out-
put, --robot --list should be used.

Operation modifiers
-k, --keep

Don’t delete the input files.

-f, --force
This option has several effects:

• If the target file already exists, delete it before compressing or decompressing.

• Compress or decompress even if the input is a symbolic link to a regular file, has more than
one hard link, or has the setuid, setgid, or sticky bit set. The setuid, setgid, and sticky bits are
not copied to the target file.

• When used with --decompress --stdout and xz cannot recognize the type of the source file,
copy the source file as is to standard output. This allows xzcat --force to be used like cat(1)
for files that have not been compressed with xz. Note that in future, xz might support new
compressed file formats, which may make xz decompress more types of files instead of copy-
ing them as is to standard output. --format= format can be used to restrict xz to decompress
only a single file format.

-c, --stdout, --to-stdout
Write the compressed or decompressed data to standard output instead of a file. This implies
--keep.

--single-stream
Decompress only the first .xz stream, and silently ignore possible remaining input data following
the stream. Normally such trailing garbage makes xz display an error.

xz never decompresses more than one stream from .lzma files or raw streams, but this option still
makes xz ignore the possible trailing data after the .lzma file or raw stream.

This option has no effect if the operation mode is not --decompress or --test.

--no-sparse
Disable creation of sparse files. By default, if decompressing into a regular file, xz tries to make
the file sparse if the decompressed data contains long sequences of binary zeros. It also works
when writing to standard output as long as standard output is connected to a regular file and cer-
tain additional conditions are met to make it safe. Creating sparse files may save disk space and
speed up the decompression by reducing the amount of disk I/O.

-S .suf, --suffix=.suf
When compressing, use .suf as the suffix for the target file instead of .xz or .lzma. If not writing
to standard output and the source file already has the suffix .suf , a warning is displayed and the file
is skipped.

Tukaani 2017-04-19 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/cat

XZ (1) XZ Utils XZ (1)

When decompressing, recognize files with the suffix .suf in addition to files with the .xz, .txz,
.lzma, or .tlz suffix. If the source file has the suffix .suf , the suffix is removed to get the target
filename.

When compressing or decompressing raw streams (--format=raw), the suffix must always be
specified unless writing to standard output, because there is no default suffix for raw streams.

--files[=file]
Read the filenames to process from file; if file is omitted, filenames are read from standard input.
Filenames must be terminated with the newline character. A dash (-) is taken as a regular file-
name; it doesn’t mean standard input. If filenames are given also as command line arguments,
they are processed before the filenames read from file.

--files0[=file]
This is identical to --files[=file] except that each filename must be terminated with the null char-
acter.

Basic file format and compression options
-F format, --format=format

Specify the file format to compress or decompress:

auto This is the default. When compressing, auto is equivalent to xz. When decompressing,
the format of the input file is automatically detected. Note that raw streams (created with
--format=raw) cannot be auto-detected.

xz Compress to the .xz file format, or accept only .xz files when decompressing.

lzma, alone
Compress to the legacy .lzma file format, or accept only .lzma files when decompressing.
The alternative name alone is provided for backwards compatibility with LZMA Utils.

raw Compress or uncompress a raw stream (no headers). This is meant for advanced users
only. To decode raw streams, you need use --format=raw and explicitly specify the fil-
ter chain, which normally would have been stored in the container headers.

-C check, --check=check
Specify the type of the integrity check. The check is calculated from the uncompressed data and
stored in the .xz file. This option has an effect only when compressing into the .xz format; the
.lzma format doesn’t support integrity checks. The integrity check (if any) is verified when the .xz
file is decompressed.

Supported check types:

none Don’t calculate an integrity check at all. This is usually a bad idea. This can be useful
when integrity of the data is verified by other means anyway.

crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

crc64 Calculate CRC64 using the polynomial from ECMA-182. This is the default, since it is
slightly better than CRC32 at detecting damaged files and the speed difference is negligi-
ble.

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to change or disable
it.

--ignore-check
Don’t verify the integrity check of the compressed data when decompressing. The CRC32 values
in the .xz headers will still be verified normally.

Do not use this option unless you know what you are doing. Possible reasons to use this op-
tion:

Tukaani 2017-04-19 4

XZ (1) XZ Utils XZ (1)

• Trying to recover data from a corrupt .xz file.

• Speeding up decompression. This matters mostly with SHA-256 or with files that have com-
pressed extremely well. It’s recommended to not use this option for this purpose unless the file
integrity is verified externally in some other way.

-0 ... -9
Select a compression preset level. The default is -6. If multiple preset levels are specified, the
last one takes effect. If a custom filter chain was already specified, setting a compression preset
level clears the custom filter chain.

The differences between the presets are more significant than with gzip(1) and bzip2(1). The se-
lected compression settings determine the memory requirements of the decompressor, thus using a
too high preset level might make it painful to decompress the file on an old system with little
RAM. Specifically, it’s not a good idea to blindly use -9 for everything like it often is with
gzip(1) and bzip2(1).

-0 ... -3
These are somewhat fast presets. -0 is sometimes faster than gzip -9 while compressing
much better. The higher ones often have speed comparable to bzip2(1) with comparable
or better compression ratio, although the results depend a lot on the type of data being
compressed.

-4 ... -6
Good to very good compression while keeping decompressor memory usage reasonable
even for old systems. -6 is the default, which is usually a good choice e.g. for distribut-
ing files that need to be decompressible even on systems with only 16 MiB RAM. (-5e
or -6e may be worth considering too. See --extreme.)

-7 ... -9
These are like -6 but with higher compressor and decompressor memory requirements.
These are useful only when compressing files bigger than 8 MiB, 16 MiB, and 32 MiB,
respectively.

On the same hardware, the decompression speed is approximately a constant number of bytes of
compressed data per second. In other words, the better the compression, the faster the decompres-
sion will usually be. This also means that the amount of uncompressed output produced per sec-
ond can vary a lot.

The following table summarises the features of the presets:

Preset DictSize CompCPU CompMem DecMem
-0 256 KiB 0 3 MiB 1 MiB
-1 1 MiB 1 9 MiB 2 MiB
-2 2 MiB 2 17 MiB 3 MiB
-3 4 MiB 3 32 MiB 5 MiB
-4 4 MiB 4 48 MiB 5 MiB
-5 8 MiB 5 94 MiB 9 MiB
-6 8 MiB 6 94 MiB 9 MiB
-7 16 MiB 6 186 MiB 17 MiB
-8 32 MiB 6 370 MiB 33 MiB
-9 64 MiB 6 674 MiB 65 MiB

Column descriptions:

• DictSize is the LZMA2 dictionary size. It is waste of memory to use a dictionary bigger than
the size of the uncompressed file. This is why it is good to avoid using the presets -7 ... -9
when there’s no real need for them. At -6 and lower, the amount of memory wasted is usually
low enough to not matter.

Tukaani 2017-04-19 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bzip2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bzip2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bzip2

XZ (1) XZ Utils XZ (1)

• CompCPU is a simplified representation of the LZMA2 settings that affect compression speed.
The dictionary size affects speed too, so while CompCPU is the same for levels -6 ... -9,
higher levels still tend to be a little slower. To get even slower and thus possibly better com-
pression, see --extreme.

• CompMem contains the compressor memory requirements in the single-threaded mode. It
may vary slightly between xz versions. Memory requirements of some of the future multi-
threaded modes may be dramatically higher than that of the single-threaded mode.

• DecMem contains the decompressor memory requirements. That is, the compression settings
determine the memory requirements of the decompressor. The exact decompressor memory
usage is slightly more than the LZMA2 dictionary size, but the values in the table have been
rounded up to the next full MiB.

-e, --extreme
Use a slower variant of the selected compression preset level (-0 ... -9) to hopefully get a little bit
better compression ratio, but with bad luck this can also make it worse. Decompressor memory
usage is not affected, but compressor memory usage increases a little at preset levels -0 ... -3.

Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets -3e and -5e use
slightly faster settings (lower CompCPU) than -4e and -6e, respectively. That way no two presets
are identical.

Preset DictSize CompCPU CompMem DecMem
-0e 256 KiB 8 4 MiB 1 MiB
-1e 1 MiB 8 13 MiB 2 MiB
-2e 2 MiB 8 25 MiB 3 MiB
-3e 4 MiB 7 48 MiB 5 MiB
-4e 4 MiB 8 48 MiB 5 MiB
-5e 8 MiB 7 94 MiB 9 MiB
-6e 8 MiB 8 94 MiB 9 MiB
-7e 16 MiB 8 186 MiB 17 MiB
-8e 32 MiB 8 370 MiB 33 MiB
-9e 64 MiB 8 674 MiB 65 MiB

For example, there are a total of four presets that use 8 MiB dictionary, whose order from the
fastest to the slowest is -5, -6, -5e, and -6e.

--fast
--best These are somewhat misleading aliases for -0 and -9, respectively. These are provided only for

backwards compatibility with LZMA Utils. Avoid using these options.

--block-size=size
When compressing to the .xz format, split the input data into blocks of size bytes. The blocks are
compressed independently from each other, which helps with multi-threading and makes limited
random-access decompression possible. This option is typically used to override the default block
size in multi-threaded mode, but this option can be used in single-threaded mode too.

In multi-threaded mode about three times size bytes will be allocated in each thread for buffering
input and output. The default size is three times the LZMA2 dictionary size or 1 MiB, whichever
is more. Typically a good value is 2-4 times the size of the LZMA2 dictionary or at least 1 MiB.
Using size less than the LZMA2 dictionary size is waste of RAM because then the LZMA2 dictio-
nary buffer will never get fully used. The sizes of the blocks are stored in the block headers,
which a future version of xz will use for multi-threaded decompression.

In single-threaded mode no block splitting is done by default. Setting this option doesn’t affect
memory usage. No size information is stored in block headers, thus files created in single-
threaded mode won’t be identical to files created in multi-threaded mode. The lack of size infor-
mation also means that a future version of xz won’t be able decompress the files in multi-threaded
mode.

Tukaani 2017-04-19 6

XZ (1) XZ Utils XZ (1)

--block-list=sizes
When compressing to the .xz format, start a new block after the given intervals of uncompressed
data.

The uncompressed sizes of the blocks are specified as a comma-separated list. Omitting a size
(two or more consecutive commas) is a shorthand to use the size of the previous block.

If the input file is bigger than the sum of sizes, the last value in sizes is repeated until the end of
the file. A special value of 0 may be used as the last value to indicate that the rest of the file
should be encoded as a single block.

If one specifies sizes that exceed the encoder’s block size (either the default value in threaded
mode or the value specified with --block-size=size), the encoder will create additional blocks
while keeping the boundaries specified in sizes. For example, if one specifies
--block-size=10MiB --block-list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is 80
MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1 MiB.

In multi-threaded mode the sizes of the blocks are stored in the block headers. This isn’t done in
single-threaded mode, so the encoded output won’t be identical to that of the multi-threaded mode.

--flush-timeout=timeout
When compressing, if more than timeout milliseconds (a positive integer) has passed since the
previous flush and reading more input would block, all the pending input data is flushed from the
encoder and made available in the output stream. This can be useful if xz is used to compress data
that is streamed over a network. Small timeout values make the data available at the receiving end
with a small delay, but large timeout values give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last one takes ef-
fect. The special timeout value of 0 can be used to explicitly disable this feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the stream in
real time due to how xz does buffering.

--memlimit-compress=limit
Set a memory usage limit for compression. If this option is specified multiple times, the last one
takes effect.

If the compression settings exceed the limit, xz will adjust the settings downwards so that the limit
is no longer exceeded and display a notice that automatic adjustment was done. Such adjustments
are not made when compressing with --format=raw or if --no-adjust has been specified. In
those cases, an error is displayed and xz will exit with exit status 1.

The limit can be specified in multiple ways:

• The limit can be an absolute value in bytes. Using an integer suffix like MiB can be useful.
Example: --memlimit-compress=80MiB

• The limit can be specified as a percentage of total physical memory (RAM). This can be use-
ful especially when setting the XZ_DEFAULTS environment variable in a shell initialization
script that is shared between different computers. That way the limit is automatically bigger
on systems with more memory. Example: --memlimit-compress=70%

• The limit can be reset back to its default value by setting it to 0. This is currently equivalent to
setting the limit to max (no memory usage limit). Once multithreading support has been im-
plemented, there may be a difference between 0 and max for the multithreaded case, so it is
recommended to use 0 instead of max until the details have been decided.

See also the section Memory usage.

--memlimit-decompress=limit
Set a memory usage limit for decompression. This also affects the --list mode. If the operation
is not possible without exceeding the limit, xz will display an error and decompressing the file will

Tukaani 2017-04-19 7

XZ (1) XZ Utils XZ (1)

fail. See --memlimit-compress=limit for possible ways to specify the limit.

-M limit, --memlimit=limit, --memory=limit
This is equivalent to specifying --memlimit-compress=limit --memlimit-decompress=limit.

--no-adjust
Display an error and exit if the compression settings exceed the memory usage limit. The default
is to adjust the settings downwards so that the memory usage limit is not exceeded. Automatic ad-
justing is always disabled when creating raw streams (--format=raw).

-T threads, --threads=threads
Specify the number of worker threads to use. Setting threads to a special value 0 makes xz use as
many threads as there are CPU cores on the system. The actual number of threads can be less than
threads if the input file is not big enough for threading with the given settings or if using more
threads would exceed the memory usage limit.

Currently the only threading method is to split the input into blocks and compress them indepen-
dently from each other. The default block size depends on the compression level and can be over-
riden with the --block-size=size option.

Threaded decompression hasn’t been implemented yet. It will only work on files that contain mul-
tiple blocks with size information in block headers. All files compressed in multi-threaded mode
meet this condition, but files compressed in single-threaded mode don’t even if --block-size=size
is used.

Custom compressor filter chains
A custom filter chain allows specifying the compression settings in detail instead of relying on the settings
associated to the presets. When a custom filter chain is specified, preset options (-0 ... -9 and --extreme)
earlier on the command line are forgotten. If a preset option is specified after one or more custom filter
chain options, the new preset takes effect and the custom filter chain options specified earlier are forgotten.

A filter chain is comparable to piping on the command line. When compressing, the uncompressed input
goes to the first filter, whose output goes to the next filter (if any). The output of the last filter gets written
to the compressed file. The maximum number of filters in the chain is four, but typically a filter chain has
only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work only as the last
filter in the chain, some only as a non-last filter, and some work in any position in the chain. Depending on
the filter, this limitation is either inherent to the filter design or exists to prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are wanted in the fil-
ter chain. That is, the order of filter options is significant! When decoding raw streams (--format=raw),
the filter chain is specified in the same order as it was specified when compressing.

Filters take filter-specific options as a comma-separated list. Extra commas in options are ignored. Every
option has a default value, so you need to specify only those you want to change.

To see the whole filter chain and options, use xz -vv (that is, use --verbose twice). This works also for
viewing the filter chain options used by presets.

--lzma1[=options]
--lzma2[=options]

Add LZMA1 or LZMA2 filter to the filter chain. These filters can be used only as the last filter in
the chain.

LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma file format,
which supports only LZMA1. LZMA2 is an updated version of LZMA1 to fix some practical is-
sues of LZMA1. The .xz format uses LZMA2 and doesn’t support LZMA1 at all. Compression
speed and ratios of LZMA1 and LZMA2 are practically the same.

LZMA1 and LZMA2 share the same set of options:

Tukaani 2017-04-19 8

XZ (1) XZ Utils XZ (1)

preset=preset
Reset all LZMA1 or LZMA2 options to preset. Preset consist of an integer, which may
be followed by single-letter preset modifiers. The integer can be from 0 to 9, matching
the command line options -0 ... -9. The only supported modifier is currently e, which
matches --extreme. If no preset is specified, the default values of LZMA1 or LZMA2
options are taken from the preset 6.

dict=size
Dictionary (history buffer) size indicates how many bytes of the recently processed un-
compressed data is kept in memory. The algorithm tries to find repeating byte sequences
(matches) in the uncompressed data, and replace them with references to the data cur-
rently in the dictionary. The bigger the dictionary, the higher is the chance to find a
match. Thus, increasing dictionary size usually improves compression ratio, but a dictio-
nary bigger than the uncompressed file is waste of memory.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB. The maxi-
mum for compression is currently 1.5 GiB (1536 MiB). The decompressor already sup-
ports dictionaries up to one byte less than 4 GiB, which is the maximum for the LZMA1
and LZMA2 stream formats.

Dictionary size and match finder (mf) together determine the memory usage of the
LZMA1 or LZMA2 encoder. The same (or bigger) dictionary size is required for decom-
pressing that was used when compressing, thus the memory usage of the decoder is deter-
mined by the dictionary size used when compressing. The .xz headers store the dictio-
nary size either as 2ˆn or 2ˆn + 2ˆ(n-1), so these sizes are somewhat preferred for com-
pression. Other sizes will get rounded up when stored in the .xz headers.

lc=lc Specify the number of literal context bits. The minimum is 0 and the maximum is 4; the
default is 3. In addition, the sum of lc and lp must not exceed 4.

All bytes that cannot be encoded as matches are encoded as literals. That is, literals are
simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highest lc bits of the previous uncom-
pressed byte correlate with the next byte. E.g. in typical English text, an upper-case letter
is often followed by a lower-case letter, and a lower-case letter is usually followed by an-
other lower-case letter. In the US-ASCII character set, the highest three bits are 010 for
upper-case letters and 011 for lower-case letters. When lc is at least 3, the literal coding
can take advantage of this property in the uncompressed data.

The default value (3) is usually good. If you want maximum compression, test lc=4.
Sometimes it helps a little, and sometimes it makes compression worse. If it makes it
worse, test e.g. lc=2 too.

lp=lp Specify the number of literal position bits. The minimum is 0 and the maximum is 4; the
default is 0.

Lp affects what kind of alignment in the uncompressed data is assumed when encoding
literals. See pb below for more information about alignment.

pb=pb Specify the number of position bits. The minimum is 0 and the maximum is 4; the de-
fault is 2.

Pb affects what kind of alignment in the uncompressed data is assumed in general. The
default means four-byte alignment (2ˆpb=2ˆ2=4), which is often a good choice when
there’s no better guess.

When the aligment is known, setting pb accordingly may reduce the file size a little. E.g.
with text files having one-byte alignment (US-ASCII, ISO-8859-*, UTF-8), setting pb=0
can improve compression slightly. For UTF-16 text, pb=1 is a good choice. If the align-
ment is an odd number like 3 bytes, pb=0 might be the best choice.

Tukaani 2017-04-19 9

XZ (1) XZ Utils XZ (1)

Even though the assumed alignment can be adjusted with pb and lp, LZMA1 and
LZMA2 still slightly favor 16-byte alignment. It might be worth taking into account
when designing file formats that are likely to be often compressed with LZMA1 or
LZMA2.

mf=mf Match finder has a major effect on encoder speed, memory usage, and compression ratio.
Usually Hash Chain match finders are faster than Binary Tree match finders. The default
depends on the preset: 0 uses hc3, 1-3 use hc4, and the rest use bt4.

The following match finders are supported. The memory usage formulas below are rough
approximations, which are closest to the reality when dict is a power of two.

hc3 Hash Chain with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict * 7.5 (if dict <= 16 MiB);
dict * 5.5 + 64 MiB (if dict > 16 MiB)

hc4 Hash Chain with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4
Memory usage:
dict * 7.5 (if dict <= 32 MiB);
dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing
Minimum value for nice: 2
Memory usage: dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict * 11.5 (if dict <= 16 MiB);
dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4
Memory usage:
dict * 11.5 (if dict <= 32 MiB);
dict * 10.5 (if dict > 32 MiB)

mode=mode
Compression mode specifies the method to analyze the data produced by the match
finder. Supported modes are fast and normal. The default is fast for presets 0-3 and
normal for presets 4-9.

Usually fast is used with Hash Chain match finders and normal with Binary Tree match
finders. This is also what the presets do.

nice=nice
Specify what is considered to be a nice length for a match. Once a match of at least nice
bytes is found, the algorithm stops looking for possibly better matches.

Nice can be 2-273 bytes. Higher values tend to give better compression ratio at the ex-
pense of speed. The default depends on the preset.

depth=depth
Specify the maximum search depth in the match finder. The default is the special value
of 0, which makes the compressor determine a reasonable depth from mf and nice.

Reasonable depth for Hash Chains is 4-100 and 16-1000 for Binary Trees. Using very
high values for depth can make the encoder extremely slow with some files. Avoid set-
ting the depth over 1000 unless you are prepared to interrupt the compression in case it is

Tukaani 2017-04-19 10

XZ (1) XZ Utils XZ (1)

taking far too long.

When decoding raw streams (--format=raw), LZMA2 needs only the dictionary size. LZMA1
needs also lc, lp, and pb.

--x86[=options]
--powerpc[=options]
--ia64[=options]
--arm[=options]
--armthumb[=options]
--sparc[=options]

Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only as a non-last
filter in the filter chain.

A BCJ filter converts relative addresses in the machine code to their absolute counterparts. This
doesn’t change the size of the data, but it increases redundancy, which can help LZMA2 to pro-
duce 0-15 % smaller .xz file. The BCJ filters are always reversible, so using a BCJ filter for
wrong type of data doesn’t cause any data loss, although it may make the compression ratio
slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only on the exe-
cutable section. Applying a BCJ filter on an archive that contains both executable and non-exe-
cutable files may or may not give good results, so it generally isn’t good to blindly apply a BCJ fil-
ter when compressing binary packages for distribution.

These BCJ filters are very fast and use insignificant amount of memory. If a BCJ filter improves
compression ratio of a file, it can improve decompression speed at the same time. This is because,
on the same hardware, the decompression speed of LZMA2 is roughly a fixed number of bytes of
compressed data per second.

These BCJ filters have known problems related to the compression ratio:

• Some types of files containing executable code (e.g. object files, static libraries, and Linux ker-
nel modules) have the addresses in the instructions filled with filler values. These BCJ filters
will still do the address conversion, which will make the compression worse with these files.

• Applying a BCJ filter on an archive containing multiple similar executables can make the com-
pression ratio worse than not using a BCJ filter. This is because the BCJ filter doesn’t detect
the boundaries of the executable files, and doesn’t reset the address conversion counter for
each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ filters will still
be useful in embedded systems, because the decoder of the new filter will be bigger and use more
memory.

Different instruction sets have have different alignment:

Filter Alignment Notes
x86 1 32-bit or 64-bit x86
PowerPC 4 Big endian only
ARM 4 Little endian only
ARM-Thumb 2 Little endian only
IA-64 16 Big or little endian
SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA2, the compression ratio may be im-
proved slightly if the LZMA2 options are set to match the alignment of the selected BCJ filter. For
example, with the IA-64 filter, it’s good to set pb=4 with LZMA2 (2ˆ4=16). The x86 filter is an
exception; it’s usually good to stick to LZMA2’s default four-byte alignment when compressing
x86 executables.

Tukaani 2017-04-19 11

XZ (1) XZ Utils XZ (1)

All BCJ filters support the same options:

start=offset
Specify the start offset that is used when converting between relative and absolute ad-
dresses. The offset must be a multiple of the alignment of the filter (see the table above).
The default is zero. In practice, the default is good; specifying a custom offset is almost
never useful.

--delta[=options]
Add the Delta filter to the filter chain. The Delta filter can be only used as a non-last filter in the
filter chain.

Currently only simple byte-wise delta calculation is supported. It can be useful when compressing
e.g. uncompressed bitmap images or uncompressed PCM audio. However, special purpose algo-
rithms may give significantly better results than Delta + LZMA2. This is true especially with au-
dio, which compresses faster and better e.g. with flac(1).

Supported options:

dist=distance
Specify the distance of the delta calculation in bytes. distance must be 1-256. The de-
fault is 1.

For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the output
will be A1 B1 01 02 01 02 01 02.

Other options
-q, --quiet

Suppress warnings and notices. Specify this twice to suppress errors too. This option has no ef-
fect on the exit status. That is, even if a warning was suppressed, the exit status to indicate a warn-
ing is still used.

-v, --verbose
Be verbose. If standard error is connected to a terminal, xz will display a progress indicator.
Specifying --verbose twice will give even more verbose output.

The progress indicator shows the following information:

• Completion percentage is shown if the size of the input file is known. That is, the percentage
cannot be shown in pipes.

• Amount of compressed data produced (compressing) or consumed (decompressing).

• Amount of uncompressed data consumed (compressing) or produced (decompressing).

• Compression ratio, which is calculated by dividing the amount of compressed data processed
so far by the amount of uncompressed data processed so far.

• Compression or decompression speed. This is measured as the amount of uncompressed data
consumed (compression) or produced (decompression) per second. It is shown after a few sec-
onds have passed since xz started processing the file.

• Elapsed time in the format M:SS or H:MM:SS.

• Estimated remaining time is shown only when the size of the input file is known and a couple
of seconds have already passed since xz started processing the file. The time is shown in a less
precise format which never has any colons, e.g. 2 min 30 s.

When standard error is not a terminal, --verbose will make xz print the filename, compressed
size, uncompressed size, compression ratio, and possibly also the speed and elapsed time on a sin-
gle line to standard error after compressing or decompressing the file. The speed and elapsed time
are included only when the operation took at least a few seconds. If the operation didn’t finish,
e.g. due to user interruption, also the completion percentage is printed if the size of the input file is
known.

Tukaani 2017-04-19 12

XZ (1) XZ Utils XZ (1)

-Q, --no-warn
Don’t set the exit status to 2 even if a condition worth a warning was detected. This option doesn’t
affect the verbosity level, thus both --quiet and --no-warn have to be used to not display warn-
ings and to not alter the exit status.

--robot
Print messages in a machine-parsable format. This is intended to ease writing frontends that want
to use xz instead of liblzma, which may be the case with various scripts. The output with this op-
tion enabled is meant to be stable across xz releases. See the section ROBOT MODE for details.

--info-memory
Display, in human-readable format, how much physical memory (RAM) xz thinks the system has
and the memory usage limits for compression and decompression, and exit successfully.

-h, --help
Display a help message describing the most commonly used options, and exit successfully.

-H, --long-help
Display a help message describing all features of xz, and exit successfully

-V, --version
Display the version number of xz and liblzma in human readable format. To get machine-parsable
output, specify --robot before --version.

ROBOT MODE
The robot mode is activated with the --robot option. It makes the output of xz easier to parse by other
programs. Currently --robot is supported only together with --version, --info-memory, and --list. It
will be supported for compression and decompression in the future.

Version
xz --robot --version will print the version number of xz and liblzma in the following format:

XZ_VERSION=XYYYZZZS
LIBLZMA_VERSION=XYYYZZZS

X Major version.

YYY Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.

ZZZ Patch level for stable releases or just a counter for development releases.

S Stability. 0 is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY is even.

XYYYZZZS are the same on both lines if xz and liblzma are from the same XZ Utils release.

Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

Memory limit information
xz --robot --info-memory prints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes. A special value of zero indicates the default setting,
which for single-threaded mode is the same as no limit.

3. Memory usage limit for decompression in bytes. A special value of zero indicates the default setting,
which for single-threaded mode is the same as no limit.

In the future, the output of xz --robot --info-memory may have more columns, but never more than a
single line.

List mode
xz --robot --list uses tab-separated output. The first column of every line has a string that indicates the
type of the information found on that line:

Tukaani 2017-04-19 13

XZ (1) XZ Utils XZ (1)

name This is always the first line when starting to list a file. The second column on the line is the file-
name.

file This line contains overall information about the .xz file. This line is always printed after the name
line.

stream This line type is used only when --verbose was specified. There are as many stream lines as
there are streams in the .xz file.

block This line type is used only when --verbose was specified. There are as many block lines as there
are blocks in the .xz file. The block lines are shown after all the stream lines; different line types
are not interleaved.

summary
This line type is used only when --verbose was specified twice. This line is printed after all
block lines. Like the file line, the summary line contains overall information about the .xz file.

totals This line is always the very last line of the list output. It shows the total counts and sizes.

The columns of the file lines:
2. Number of streams in the file
3. Total number of blocks in the stream(s)
4. Compressed size of the file
5. Uncompressed size of the file
6. Compression ratio, for example 0.123. If ratio is over 9.999, three dashes (---) are dis-

played instead of the ratio.
7. Comma-separated list of integrity check names. The following strings are used for the known

check types: None, CRC32, CRC64, and SHA-256. For unknown check types, Un-
known-N is used, where N is the Check ID as a decimal number (one or two digits).

8. Total size of stream padding in the file

The columns of the stream lines:
2. Stream number (the first stream is 1)
3. Number of blocks in the stream
4. Compressed start offset
5. Uncompressed start offset
6. Compressed size (does not include stream padding)
7. Uncompressed size
8. Compression ratio
9. Name of the integrity check
10. Size of stream padding

The columns of the block lines:
2. Number of the stream containing this block
3. Block number relative to the beginning of the stream (the first block is 1)
4. Block number relative to the beginning of the file
5. Compressed start offset relative to the beginning of the file
6. Uncompressed start offset relative to the beginning of the file
7. Total compressed size of the block (includes headers)
8. Uncompressed size
9. Compression ratio
10. Name of the integrity check

If --verbose was specified twice, additional columns are included on the block lines. These are not dis-
played with a single --verbose, because getting this information requires many seeks and can thus be
slow:

11. Value of the integrity check in hexadecimal
12. Block header size

Tukaani 2017-04-19 14

XZ (1) XZ Utils XZ (1)

13. Block flags: c indicates that compressed size is present, and u indicates that uncompressed
size is present. If the flag is not set, a dash (-) is shown instead to keep the string length
fixed. New flags may be added to the end of the string in the future.

14. Size of the actual compressed data in the block (this excludes the block header, block
padding, and check fields)

15. Amount of memory (in bytes) required to decompress this block with this xz version
16. Filter chain. Note that most of the options used at compression time cannot be known, be-

cause only the options that are needed for decompression are stored in the .xz headers.

The columns of the summary lines:
2. Amount of memory (in bytes) required to decompress this file with this xz version
3. yes or no indicating if all block headers have both compressed size and uncompressed size

stored in them
Since xz 5.1.2alpha:
4. Minimum xz version required to decompress the file

The columns of the totals line:
2. Number of streams
3. Number of blocks
4. Compressed size
5. Uncompressed size
6. Average compression ratio
7. Comma-separated list of integrity check names that were present in the files
8. Stream padding size
9. Number of files. This is here to keep the order of the earlier columns the same as on file

lines.

If --verbose was specified twice, additional columns are included on the totals line:
10. Maximum amount of memory (in bytes) required to decompress the files with this xz version
11. yes or no indicating if all block headers have both compressed size and uncompressed size

stored in them
Since xz 5.1.2alpha:
12. Minimum xz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line types, but the
existing columns won’t be changed.

EXIT STATUS
0 All is good.

1 An error occurred.

2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT
xz parses space-separated lists of options from the environment variables XZ_DEFAULTS and XZ_OPT,
in this order, before parsing the options from the command line. Note that only options are parsed from the
environment variables; all non-options are silently ignored. Parsing is done with getopt_long(3) which is
used also for the command line arguments.

XZ_DEFAULTS
User-specific or system-wide default options. Typically this is set in a shell initialization script to
enable xz’s memory usage limiter by default. Excluding shell initialization scripts and similar spe-
cial cases, scripts must never set or unset XZ_DEFAULTS.

XZ_OPT
This is for passing options to xz when it is not possible to set the options directly on the xz com-
mand line. This is the case e.g. when xz is run by a script or tool, e.g. GNU tar(1):

XZ_OPT=-2v tar caf foo.tar.xz foo

Tukaani 2017-04-19 15

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getopt_long
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/tar

XZ (1) XZ Utils XZ (1)

Scripts may use XZ_OPT e.g. to set script-specific default compression options. It is still recom-
mended to allow users to override XZ_OPT if that is reasonable, e.g. in sh(1) scripts one may use
something like this:

XZ_OPT=${XZ_OPT-"-7e"}
export XZ_OPT

LZMA UTILS COMPATIBILITY
The command line syntax of xz is practically a superset of lzma, unlzma, and lzcat as found from LZMA
Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Utils without breaking existing
scripts. There are some incompatibilities though, which may sometimes cause problems.

Compression preset levels
The numbering of the compression level presets is not identical in xz and LZMA Utils. The most important
difference is how dictionary sizes are mapped to different presets. Dictionary size is roughly equal to the
decompressor memory usage.

Level xz LZMA Utils
-0 256 KiB N/A
-1 1 MiB 64 KiB
-2 2 MiB 1 MiB
-3 4 MiB 512 KiB
-4 4 MiB 1 MiB
-5 8 MiB 2 MiB
-6 8 MiB 4 MiB
-7 16 MiB 8 MiB
-8 32 MiB 16 MiB
-9 64 MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some other differ-
ences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level xz LZMA Utils 4.32.x
-0 3 MiB N/A
-1 9 MiB 2 MiB
-2 17 MiB 12 MiB
-3 32 MiB 12 MiB
-4 48 MiB 16 MiB
-5 94 MiB 26 MiB
-6 94 MiB 45 MiB
-7 186 MiB 83 MiB
-8 370 MiB 159 MiB
-9 674 MiB 311 MiB

The default preset level in LZMA Utils is -7 while in XZ Utils it is -6, so both use an 8 MiB dictionary by
default.

Streamed vs. non-streamed .lzma files
The uncompressed size of the file can be stored in the .lzma header. LZMA Utils does that when com-
pressing regular files. The alternative is to mark that uncompressed size is unknown and use end-of-pay-
load marker to indicate where the decompressor should stop. LZMA Utils uses this method when uncom-
pressed size isn’t known, which is the case for example in pipes.

xz supports decompressing .lzma files with or without end-of-payload marker, but all .lzma files created by
xz will use end-of-payload marker and have uncompressed size marked as unknown in the .lzma header.
This may be a problem in some uncommon situations. For example, a .lzma decompressor in an embedded
device might work only with files that have known uncompressed size. If you hit this problem, you need to
use LZMA Utils or LZMA SDK to create .lzma files with known uncompressed size.

Tukaani 2017-04-19 16

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/sh

XZ (1) XZ Utils XZ (1)

Unsupported .lzma files
The .lzma format allows lc values up to 8, and lp values up to 4. LZMA Utils can decompress files with
any lc and lp, but always creates files with lc=3 and lp=0. Creating files with other lc and lp is possible
with xz and with LZMA SDK.

The implementation of the LZMA1 filter in liblzma requires that the sum of lc and lp must not exceed 4.
Thus, .lzma files, which exceed this limitation, cannot be decompressed with xz.

LZMA Utils creates only .lzma files which have a dictionary size of 2ˆn (a power of 2) but accepts files
with any dictionary size. liblzma accepts only .lzma files which have a dictionary size of 2ˆn or 2ˆn +
2ˆ(n-1). This is to decrease false positives when detecting .lzma files.

These limitations shouldn’t be a problem in practice, since practically all .lzma files have been compressed
with settings that liblzma will accept.

Trailing garbage
When decompressing, LZMA Utils silently ignore everything after the first .lzma stream. In most situa-
tions, this is a bug. This also means that LZMA Utils don’t support decompressing concatenated .lzma
files.

If there is data left after the first .lzma stream, xz considers the file to be corrupt unless --single-stream
was used. This may break obscure scripts which have assumed that trailing garbage is ignored.

NOTES
Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary between XZ Utils
versions even if compression options are identical. This is because the encoder can be improved (faster or
better compression) without affecting the file format. The output can vary even between different builds of
the same XZ Utils version, if different build options are used.

The above means that once --rsyncable has been implemented, the resulting files won’t necessarily be
rsyncable unless both old and new files have been compressed with the same xz version. This problem can
be fixed if a part of the encoder implementation is frozen to keep rsyncable output stable across xz versions.

Embedded .xz decompressors
Embedded .xz decompressor implementations like XZ Embedded don’t necessarily support files created
with integrity check types other than none and crc32. Since the default is --check=crc64, you must use
--check=none or --check=crc32 when creating files for embedded systems.

Outside embedded systems, all .xz format decompressors support all the check types, or at least are able to
decompress the file without verifying the integrity check if the particular check is not supported.

XZ Embedded supports BCJ filters, but only with the default start offset.

EXAMPLES
Basics

Compress the file foo into foo.xz using the default compression level (-6), and remove foo if compression
is successful:

xz foo

Decompress bar.xz into bar and don’t remove bar.xz even if decompression is successful:

xz -dk bar.xz

Create baz.tar.xz with the preset -4e (-4 --extreme), which is slower than e.g. the default -6, but needs
less memory for compression and decompression (48 MiB and 5 MiB, respectively):

tar cf - baz | xz -4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a single com-
mand:

xz -dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Tukaani 2017-04-19 17

XZ (1) XZ Utils XZ (1)

Parallel compression of many files
On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many files:

find . -type f \! -name ’*.xz’ -print0 \
| xargs -0r -P4 -n16 xz -T1

The -P option to xargs(1) sets the number of parallel xz processes. The best value for the -n option de-
pends on how many files there are to be compressed. If there are only a couple of files, the value should
probably be 1; with tens of thousands of files, 100 or even more may be appropriate to reduce the number
of xz processes that xargs(1) will eventually create.

The option -T1 for xz is there to force it to single-threaded mode, because xargs(1) is used to control the
amount of parallelization.

Robot mode
Calculate how many bytes have been saved in total after compressing multiple files:

xz --robot --list *.xz | awk ’/ˆtotals/{print $5-$4}’

A script may want to know that it is using new enough xz. The following sh(1) script checks that the ver-
sion number of the xz tool is at least 5.0.0. This method is compatible with old beta versions, which didn’t
support the --robot option:

if ! eval "$(xz --robot --version 2> /dev/null)" ||
["$XZ_VERSION" -lt 50000002]; then
echo "Your xz is too old."
fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been set, don’t in-
crease it:

NEWLIM=$((123 << 20)) # 123 MiB
OLDLIM=$(xz --robot --info-memory | cut -f3)
if [$OLDLIM -eq 0 -o $OLDLIM -gt $NEWLIM]; then
XZ_OPT="$XZ_OPT --memlimit-decompress=$NEWLIM"
export XZ_OPT
fi

Custom compressor filter chains
The simplest use for custom filter chains is customizing a LZMA2 preset. This can be useful, because the
presets cover only a subset of the potentially useful combinations of compression settings.

The CompCPU columns of the tables from the descriptions of the options -0 ... -9 and --extreme are use-
ful when customizing LZMA2 presets. Here are the relevant parts collected from those two tables:

Preset CompCPU
-0 0
-1 1
-2 2
-3 3
-4 4
-5 5
-6 6
-5e 7
-6e 8

If you know that a file requires somewhat big dictionary (e.g. 32 MiB) to compress well, but you want to
compress it quicker than xz -8 would do, a preset with a low CompCPU value (e.g. 1) can be modified to
use a bigger dictionary:

xz --lzma2=preset=1,dict=32MiB foo.tar

Tukaani 2017-04-19 18

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/find
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xargs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xargs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xargs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xargs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/sh

XZ (1) XZ Utils XZ (1)

With certain files, the above command may be faster than xz -6 while compressing significantly better.
However, it must be emphasized that only some files benefit from a big dictionary while keeping the Com-
pCPU value low. The most obvious situation, where a big dictionary can help a lot, is an archive containing
very similar files of at least a few megabytes each. The dictionary size has to be significantly bigger than
any individual file to allow LZMA2 to take full advantage of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being compressed is at least
several hundred megabytes, it may be useful to use an even bigger dictionary than the 64 MiB that xz -9
would use:

xz -vv --lzma2=dict=192MiB big_foo.tar

Using -vv (--verbose --verbose) like in the above example can be useful to see the memory require-
ments of the compressor and decompressor. Remember that using a dictionary bigger than the size of the
uncompressed file is waste of memory, so the above command isn’t useful for small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to be kept low
e.g. to make it possible to decompress the file on an embedded system. The following command uses -6e
(-6 --extreme) as a base and sets the dictionary to only 64 KiB. The resulting file can be decompressed
with XZ Embedded (that’s why there is --check=crc32) using about 100 KiB of memory.

xz --check=crc32 --lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context bits (lc) and
number of position bits (pb) can sometimes help. Adjusting the number of literal position bits (lp) might
help too, but usually lc and pb are more important. E.g. a source code archive contains mostly US-ASCII
text, so something like the following might give slightly (like 0.1 %) smaller file than xz -6e (try also with-
out lc=4):

xz --lzma2=preset=6e,pb=0,lc=4 source_code.tar

Using another filter together with LZMA2 can improve compression with certain file types. E.g. to com-
press a x86-32 or x86-64 shared library using the x86 BCJ filter:

xz --x86 --lzma2 libfoo.so

Note that the order of the filter options is significant. If --x86 is specified after --lzma2, xz will give an
error, because there cannot be any filter after LZMA2, and also because the x86 BCJ filter cannot be used
as the last filter in the chain.

The Delta filter together with LZMA2 can give good results with bitmap images. It should usually beat
PNG, which has a few more advanced filters than simple delta but uses Deflate for the actual compression.

The image has to be saved in uncompressed format, e.g. as uncompressed TIFF. The distance parameter of
the Delta filter is set to match the number of bytes per pixel in the image. E.g. 24-bit RGB bitmap needs
dist=3, and it is also good to pass pb=0 to LZMA2 to accommodate the three-byte alignment:

xz --delta=dist=3 --lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (e.g. .tar), the Delta filter will work on that too as
long as all images have the same number of bytes per pixel.

SEE ALSO
xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <https://tukaani.org/xz/>
XZ Embedded: <https://tukaani.org/xz/embedded.html>
LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2017-04-19 19

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xzdiff
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xzgrep
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xzless
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/xzmore
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/gzip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/bzip2
https://tukaani.org/xz/
https://tukaani.org/xz/embedded.html
http://7-zip.org/sdk.html

	XZ(1)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	COMMAND ALIASES
	COMMAND ALIASES

	DESCRIPTION
	DESCRIPTION
	Memory usage
	Memory usage

	Concatenation and padding with .xz files
	Concatenation and padding with .xz files

	OPTIONS
	OPTIONS
	Integer suffixes and special values
	Integer suffixes and special values

	Operation mode
	Operation mode

	Operation modifiers
	Operation modifiers

	Basic file format and compression options
	Basic file format and compression options

	Custom compressor filter chains
	Custom compressor filter chains

	Other options
	Other options

	ROBOT MODE
	ROBOT MODE
	Version
	Version

	Memory limit information
	Memory limit information

	List mode
	List mode

	EXIT STATUS
	EXIT STATUS

	ENVIRONMENT
	ENVIRONMENT

	LZMA UTILS COMPATIBILITY
	LZMA UTILS COMPATIBILITY
	Compression preset levels
	Compression preset levels

	Streamed vs. non-streamed .lzma files
	Streamed vs. non-streamed .lzma files

	Unsupported .lzma files
	Unsupported .lzma files

	Trailing garbage
	Trailing garbage

	NOTES
	NOTES
	Compressed output may vary
	Compressed output may vary

	Embedded .xz decompressors
	Embedded .xz decompressors

	EXAMPLES
	EXAMPLES
	Basics
	Basics

	Parallel compression of many files
	Parallel compression of many files

	Robot mode
	Robot mode

	Custom compressor filter chains
	Custom compressor filter chains

	SEE ALSO
	SEE ALSO

