
VERIFY (1SSL) OpenSSL VERIFY (1SSL)

NAME
openssl-verify, verify - Utility to verify certificates

SYNOPSIS
openssl verify [-help] [-CAfile file] [-CApath directory] [-no-CAfile] [-no-CApath]
[-allow_proxy_certs] [-attime timestamp] [-check_ss_sig] [-CRLfile file] [-crl_download]
[-crl_check] [-crl_check_all] [-engine id] [-explicit_policy] [-extended_crl] [-ignore_critical]
[-inhibit_any] [-inhibit_map] [-nameopt option] [-no_check_time] [-partial_chain] [-policy arg]
[-policy_check] [-policy_print] [-purpose purpose] [-suiteB_128] [-suiteB_128_only] [-suiteB_192]
[-trusted_first] [-no_alt_chains] [-untrusted file] [-trusted file] [-use_deltas] [-verbose]
[-auth_level level] [-verify_depth num] [-verify_email email] [-verify_hostname hostname]
[-verify_ip ip] [-verify_name name] [-x509_strict] [-show_chain] [-] [certificates]

DESCRIPTION
The verify command verifies certificate chains.

OPTIONS
-help

Print out a usage message.

-CAfile file
A file of trusted certificates. The file should contain one or more certificates in PEM format.

-CApath directory
A directory of trusted certificates. The certificates should have names of the form: hash.0 or have
symbolic links to them of this form (‘‘hash’’ is the hashed certificate subject name: see the -hash
option of the x509 utility). Under Unix the c_rehash script will automatically create symbolic links to
a directory of certificates.

-no-CAfile
Do not load the trusted CA certificates from the default file location.

-no-CApath
Do not load the trusted CA certificates from the default directory location.

-allow_proxy_certs
Allow the verification of proxy certificates.

-attime timestamp
Perform validation checks using time specified by timestamp and not current system time. timestamp
is the number of seconds since 01.01.1970 (UNIX time).

-check_ss_sig
Verify the signature of the last certificate in a chain if the certificate is supposedly self-signed. This is
prohibited and will result in an error if it is a non-conforming CA certificate with key usage restrictions
not including the keyCertSign bit. This verification is disabled by default because it doesn’t add any
security.

-CRLfile file
The file should contain one or more CRLs in PEM format. This option can be specified more than
once to include CRLs from multiple files.

-crl_download
Attempt to download CRL information for this certificate.

-crl_check
Checks end entity certificate validity by attempting to look up a valid CRL. If a valid CRL cannot be
found an error occurs.

-crl_check_all
Checks the validity of all certificates in the chain by attempting to look up valid CRLs.

1.1.1n 2023-08-15 1

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

-engine id
Specifying an engine id will cause verify(1) to attempt to load the specified engine. The engine will
then be set as the default for all its supported algorithms. If you want to load certificates or CRLs that
require engine support via any of the -trusted, -untrusted or -CRLfile options, the -engine option
must be specified before those options.

-explicit_policy
Set policy variable require-explicit-policy (see RFC5280).

-extended_crl
Enable extended CRL features such as indirect CRLs and alternate CRL signing keys.

-ignore_critical
Normally if an unhandled critical extension is present which is not supported by OpenSSL the
certificate is rejected (as required by RFC5280). If this option is set critical extensions are ignored.

-inhibit_any
Set policy variable inhibit-any-policy (see RFC5280).

-inhibit_map
Set policy variable inhibit-policy-mapping (see RFC5280).

-nameopt option
Option which determines how the subject or issuer names are displayed. The option argument can be a
single option or multiple options separated by commas. Alternatively the -nameopt switch may be
used more than once to set multiple options. See the x509(1) manual page for details.

-no_check_time
This option suppresses checking the validity period of certificates and CRLs against the current time.
If option -attime timestamp is used to specify a verification time, the check is not suppressed.

-partial_chain
Allow verification to succeed even if a complete chain cannot be built to a self-signed trust-anchor,
provided it is possible to construct a chain to a trusted certificate that might not be self-signed.

-policy arg
Enable policy processing and add arg to the user-initial-policy-set (see RFC5280). The policy arg can
be an object name an OID in numeric form. This argument can appear more than once.

-policy_check
Enables certificate policy processing.

-policy_print
Print out diagnostics related to policy processing.

-purpose purpose
The intended use for the certificate. If this option is not specified, verify will not consider certificate
purpose during chain verification. Currently accepted uses are sslclient, sslserver, nssslserver,
smimesign, smimeencrypt. See the VERIFY OPERATION section for more information.

-suiteB_128_only, -suiteB_128, -suiteB_192
Enable the Suite B mode operation at 128 bit Level of Security, 128 bit or 192 bit, or only 192 bit
Level of Security respectively. See RFC6460 for details. In particular the supported signature
algorithms are reduced to support only ECDSA and SHA256 or SHA384 and only the elliptic curves
P-256 and P-384.

-trusted_first
When constructing the certificate chain, use the trusted certificates specified via -CAfile, -CApath or
-trusted before any certificates specified via -untrusted. This can be useful in environments with
Bridge or Cross-Certified CAs. As of OpenSSL 1.1.0 this option is on by default and cannot be
disabled.

1.1.1n 2023-08-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/verify
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/x509

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

-no_alt_chains
By default, unless -trusted_first is specified, when building a certificate chain, if the first certificate
chain found is not trusted, then OpenSSL will attempt to replace untrusted issuer certificates with
certificates from the trust store to see if an alternative chain can be found that is trusted. As of
OpenSSL 1.1.0, with -trusted_first always on, this option has no effect.

-untrusted file
A file of additional untrusted certificates (intermediate issuer CAs) used to construct a certificate chain
from the subject certificate to a trust-anchor. The file should contain one or more certificates in PEM
format. This option can be specified more than once to include untrusted certificates from multiple
files.

-trusted file
A file of trusted certificates, which must be self-signed, unless the -partial_chain option is specified.
The file contains one or more certificates in PEM format. With this option, no additional (e.g., default)
certificate lists are consulted. That is, the only trust-anchors are those listed in file. This option can be
specified more than once to include trusted certificates from multiple files. This option implies the
-no-CAfile and -no-CApath options. This option cannot be used in combination with either of the
-CAfile or -CApath options.

-use_deltas
Enable support for delta CRLs.

-verbose
Print extra information about the operations being performed.

-auth_level level
Set the certificate chain authentication security level to level. The authentication security level
determines the acceptable signature and public key strength when verifying certificate chains. For a
certificate chain to validate, the public keys of all the certificates must meet the specified security level.
The signature algorithm security level is enforced for all the certificates in the chain except for the
chain’s trust anchor, which is either directly trusted or validated by means other than its signature.
See SSL_CTX_set_security_level(3) for the definitions of the available levels. The default security
level is -1, or ‘‘not set’’. At security level 0 or lower all algorithms are acceptable. Security level 1
requires at least 80-bit-equivalent security and is broadly interoperable, though it will, for example,
reject MD5 signatures or RSA keys shorter than 1024 bits.

-verify_depth num
Limit the certificate chain to num intermediate CA certificates. A maximal depth chain can have up to
num+2 certificates, since neither the end-entity certificate nor the trust-anchor certificate count against
the -verify_depth limit.

-verify_email email
Verify if the email matches the email address in Subject Alternative Name or the email in the subject
Distinguished Name.

-verify_hostname hostname
Verify if the hostname matches DNS name in Subject Alternative Name or Common Name in the
subject certificate.

-verify_ip ip
Verify if the ip matches the IP address in Subject Alternative Name of the subject certificate.

-verify_name name
Use default verification policies like trust model and required certificate policies identified by name.
The trust model determines which auxiliary trust or reject OIDs are applicable to verifying the given
certificate chain. See the -addtrust and -addreject options of the x509(1) command-line utility.
Supported policy names include: default, pkcs7, smime_sign, ssl_client, ssl_server. These mimics
the combinations of purpose and trust settings used in SSL, CMS and S/MIME. As of OpenSSL 1.1.0,
the trust model is inferred from the purpose when not specified, so the -verify_name options are

1.1.1n 2023-08-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/SSL_CTX_set_security_level
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/x509

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

functionally equivalent to the corresponding -purpose settings.

-x509_strict
For strict X.509 compliance, disable non-compliant workarounds for broken certificates.

-show_chain
Display information about the certificate chain that has been built (if successful). Certificates in the
chain that came from the untrusted list will be flagged as ‘‘untrusted’’.

- Indicates the last option. All arguments following this are assumed to be certificate files. This is useful
if the first certificate filename begins with a -.

certificates
One or more certificates to verify. If no certificates are given, verify will attempt to read a certificate
from standard input. Certificates must be in PEM format.

VERIFY OPERATION
The verify program uses the same functions as the internal SSL and S/MIME verification, therefore, this
description applies to these verify operations too.

There is one crucial difference between the verify operations performed by the verify program: wherever
possible an attempt is made to continue after an error whereas normally the verify operation would halt on
the first error. This allows all the problems with a certificate chain to be determined.

The verify operation consists of a number of separate steps.

Firstly a certificate chain is built up starting from the supplied certificate and ending in the root CA. It is an
error if the whole chain cannot be built up. The chain is built up by looking up the issuers certificate of the
current certificate. If a certificate is found which is its own issuer it is assumed to be the root CA.

The process of ’looking up the issuers certificate’ itself involves a number of steps. After all certificates
whose subject name matches the issuer name of the current certificate are subject to further tests. The
relevant authority key identifier components of the current certificate (if present) must match the subject
key identifier (if present) and issuer and serial number of the candidate issuer, in addition the keyUsage
extension of the candidate issuer (if present) must permit certificate signing.

The lookup first looks in the list of untrusted certificates and if no match is found the remaining lookups are
from the trusted certificates. The root CA is always looked up in the trusted certificate list: if the certificate
to verify is a root certificate then an exact match must be found in the trusted list.

The second operation is to check every untrusted certificate’s extensions for consistency with the supplied
purpose. If the -purpose option is not included then no checks are done. The supplied or ‘‘leaf’’ certificate
must have extensions compatible with the supplied purpose and all other certificates must also be valid CA
certificates. The precise extensions required are described in more detail in the CERTIFICATE
EXTENSIONS section of the x509 utility.

The third operation is to check the trust settings on the root CA. The root CA should be trusted for the
supplied purpose. For compatibility with previous versions of OpenSSL, a certificate with no trust settings
is considered to be valid for all purposes.

The final operation is to check the validity of the certificate chain. For each element in the chain, including
the root CA certificate, the validity period as specified by the notBefore and notAfter fields is
checked against the current system time. The -attime flag may be used to use a reference time other than
‘‘now.’’ The certificate signature is checked as well (except for the signature of the typically self-signed
root CA certificate, which is verified only if the -check_ss_sig option is given).

If all operations complete successfully then certificate is considered valid. If any operation fails then the
certificate is not valid.

DIAGNOSTICS
When a verify operation fails the output messages can be somewhat cryptic. The general form of the error
message is:

1.1.1n 2023-08-15 4

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bit)
error 24 at 1 depth lookup:invalid CA certificate

The first line contains the name of the certificate being verified followed by the subject name of the
certificate. The second line contains the error number and the depth. The depth is number of the certificate
being verified when a problem was detected starting with zero for the certificate being verified itself then 1
for the CA that signed the certificate and so on. Finally a text version of the error number is presented.

A partial list of the error codes and messages is shown below, this also includes the name of the error code
as defined in the header file x509_vfy.h Some of the error codes are defined but never returned: these are
described as ‘‘unused’’.

X509_V_OK
The operation was successful.

X509_V_ERR_UNSPECIFIED
Unspecified error; should not happen.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT
The issuer certificate of a looked up certificate could not be found. This normally means the list of
trusted certificates is not complete.

X509_V_ERR_UNABLE_TO_GET_CRL
The CRL of a certificate could not be found.

X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE
The certificate signature could not be decrypted. This means that the actual signature value could not
be determined rather than it not matching the expected value, this is only meaningful for RSA keys.

X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE
The CRL signature could not be decrypted: this means that the actual signature value could not be
determined rather than it not matching the expected value. Unused.

X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY
The public key in the certificate SubjectPublicKeyInfo could not be read.

X509_V_ERR_CERT_SIGNATURE_FAILURE
The signature of the certificate is invalid.

X509_V_ERR_CRL_SIGNATURE_FAILURE
The signature of the certificate is invalid.

X509_V_ERR_CERT_NOT_YET_VALID
The certificate is not yet valid: the notBefore date is after the current time.

X509_V_ERR_CERT_HAS_EXPIRED
The certificate has expired: that is the notAfter date is before the current time.

X509_V_ERR_CRL_NOT_YET_VALID
The CRL is not yet valid.

X509_V_ERR_CRL_HAS_EXPIRED
The CRL has expired.

X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD
The certificate notBefore field contains an invalid time.

X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD
The certificate notAfter field contains an invalid time.

X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD
The CRL lastUpdate field contains an invalid time.

X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD
The CRL nextUpdate field contains an invalid time.

1.1.1n 2023-08-15 5

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

X509_V_ERR_OUT_OF_MEM
An error occurred trying to allocate memory. This should never happen.

X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
The passed certificate is self-signed and the same certificate cannot be found in the list of trusted
certificates.

X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN
The certificate chain could be built up using the untrusted certificates but the root could not be found
locally.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY
The issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate
cannot be found.

X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE
No signatures could be verified because the chain contains only one certificate and it is not self signed.

X509_V_ERR_CERT_CHAIN_TOO_LONG
The certificate chain length is greater than the supplied maximum depth. Unused.

X509_V_ERR_CERT_REVOKED
The certificate has been revoked.

X509_V_ERR_INVALID_CA
A CA certificate is invalid. Either it is not a CA or its extensions are not consistent with the supplied
purpose.

X509_V_ERR_PATH_LENGTH_EXCEEDED
The basicConstraints pathlength parameter has been exceeded.

X509_V_ERR_INVALID_PURPOSE
The supplied certificate cannot be used for the specified purpose.

X509_V_ERR_CERT_UNTRUSTED
The root CA is not marked as trusted for the specified purpose.

X509_V_ERR_CERT_REJECTED
The root CA is marked to reject the specified purpose.

X509_V_ERR_SUBJECT_ISSUER_MISMATCH
Not used as of OpenSSL 1.1.0 as a result of the deprecation of the -issuer_checks option.

X509_V_ERR_AKID_SKID_MISMATCH
Not used as of OpenSSL 1.1.0 as a result of the deprecation of the -issuer_checks option.

X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH
Not used as of OpenSSL 1.1.0 as a result of the deprecation of the -issuer_checks option.

X509_V_ERR_KEYUSAGE_NO_CERTSIGN
Not used as of OpenSSL 1.1.0 as a result of the deprecation of the -issuer_checks option.

X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER
Unable to get CRL issuer certificate.

X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION
Unhandled critical extension.

X509_V_ERR_KEYUSAGE_NO_CRL_SIGN
Key usage does not include CRL signing.

X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION
Unhandled critical CRL extension.

1.1.1n 2023-08-15 6

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

X509_V_ERR_INVALID_NON_CA
Invalid non-CA certificate has CA markings.

X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED
Proxy path length constraint exceeded.

X509_V_ERR_PROXY_SUBJECT_INVALID
Proxy certificate subject is invalid. It MUST be the same as the issuer with a single CN component
added.

X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE
Key usage does not include digital signature.

X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED
Proxy certificates not allowed, please use -allow_proxy_certs.

X509_V_ERR_INVALID_EXTENSION
Invalid or inconsistent certificate extension.

X509_V_ERR_INVALID_POLICY_EXTENSION
Invalid or inconsistent certificate policy extension.

X509_V_ERR_NO_EXPLICIT_POLICY
No explicit policy.

X509_V_ERR_DIFFERENT_CRL_SCOPE
Different CRL scope.

X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE
Unsupported extension feature.

X509_V_ERR_UNNESTED_RESOURCE
RFC 3779 resource not subset of parent’s resources.

X509_V_ERR_PERMITTED_VIOLATION
Permitted subtree violation.

X509_V_ERR_EXCLUDED_VIOLATION
Excluded subtree violation.

X509_V_ERR_SUBTREE_MINMAX
Name constraints minimum and maximum not supported.

X509_V_ERR_APPLICATION_VERIFICATION
Application verification failure. Unused.

X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE
Unsupported name constraint type.

X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX
Unsupported or invalid name constraint syntax.

X509_V_ERR_UNSUPPORTED_NAME_SYNTAX
Unsupported or invalid name syntax.

X509_V_ERR_CRL_PATH_VALIDATION_ERROR
CRL path validation error.

X509_V_ERR_PATH_LOOP
Path loop.

X509_V_ERR_SUITE_B_INVALID_VERSION
Suite B: certificate version invalid.

X509_V_ERR_SUITE_B_INVALID_ALGORITHM
Suite B: invalid public key algorithm.

1.1.1n 2023-08-15 7

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

X509_V_ERR_SUITE_B_INVALID_CURVE
Suite B: invalid ECC curve.

X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM
Suite B: invalid signature algorithm.

X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED
Suite B: curve not allowed for this LOS.

X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256
Suite B: cannot sign P-384 with P-256.

X509_V_ERR_HOSTNAME_MISMATCH
Hostname mismatch.

X509_V_ERR_EMAIL_MISMATCH
Email address mismatch.

X509_V_ERR_IP_ADDRESS_MISMATCH
IP address mismatch.

X509_V_ERR_DANE_NO_MATCH
DANE TLSA authentication is enabled, but no TLSA records matched the certificate chain. This error is
only possible in s_client(1) .

X509_V_ERR_EE_KEY_TOO_SMALL
EE certificate key too weak.

X509_ERR_CA_KEY_TOO_SMALL
CA certificate key too weak.

X509_ERR_CA_MD_TOO_WEAK
CA signature digest algorithm too weak.

X509_V_ERR_INVALID_CALL
nvalid certificate verification context.

X509_V_ERR_STORE_LOOKUP
Issuer certificate lookup error.

X509_V_ERR_NO_VALID_SCTS
Certificate Transparency required, but no valid SCTs found.

X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION
Proxy subject name violation.

X509_V_ERR_OCSP_VERIFY_NEEDED
Returned by the verify callback to indicate an OCSP verification is needed.

X509_V_ERR_OCSP_VERIFY_FAILED
Returned by the verify callback to indicate OCSP verification failed.

X509_V_ERR_OCSP_CERT_UNKNOWN
Returned by the verify callback to indicate that the certificate is not recognized by the OCSP responder.

BUGS
Although the issuer checks are a considerable improvement over the old technique they still suffer from
limitations in the underlying X509_LOOKUP API. One consequence of this is that trusted certificates with
matching subject name must either appear in a file (as specified by the -CAfile option) or a directory (as
specified by -CApath). If they occur in both then only the certificates in the file will be recognised.

Previous versions of OpenSSL assume certificates with matching subject name are identical and
mishandled them.

Previous versions of this documentation swapped the meaning of the
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT and

1.1.1n 2023-08-15 8

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/s_client

VERIFY (1SSL) OpenSSL VERIFY (1SSL)

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY error codes.

SEE ALSO
x509(1)

HISTORY
The -show_chain option was added in OpenSSL 1.1.0.

The -issuer_checks option is deprecated as of OpenSSL 1.1.0 and is silently ignored.

COPYRIGHT
Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with
the License. You can obtain a copy in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.

1.1.1n 2023-08-15 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/x509
https://www.openssl.org/source/license.html

	VERIFY(1SSL)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	OPTIONS
	OPTIONS
	-help
	-CAfile file
	-CApath directory
	-no-CAfile
	-no-CApath
	-allow_proxy_certs
	-attime timestamp
	-check_ss_sig
	-CRLfile file
	-crl_download
	-crl_check
	-crl_check_all
	-engine id
	-explicit_policy
	-extended_crl
	-ignore_critical
	-inhibit_any
	-inhibit_map
	-nameopt option
	-no_check_time
	-partial_chain
	-policy arg
	-policy_check
	-policy_print
	-purpose purpose
	-suiteB_128_only, -suiteB_128, -suiteB_192
	-trusted_first
	-no_alt_chains
	-untrusted file
	-trusted file
	-use_deltas
	-verbose
	-auth_level level
	-verify_depth num
	-verify_email email
	-verify_hostname hostname
	-verify_ip ip
	-verify_name name
	-x509_strict
	-show_chain
	-
	certificates

	VERIFY OPERATION
	VERIFY OPERATION

	DIAGNOSTICS
	DIAGNOSTICS
	X509_V_OK
	X509_V_ERR_UNSPECIFIED
	X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT
	X509_V_ERR_UNABLE_TO_GET_CRL
	X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE
	X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE
	X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY
	X509_V_ERR_CERT_SIGNATURE_FAILURE
	X509_V_ERR_CRL_SIGNATURE_FAILURE
	X509_V_ERR_CERT_NOT_YET_VALID
	X509_V_ERR_CERT_HAS_EXPIRED
	X509_V_ERR_CRL_NOT_YET_VALID
	X509_V_ERR_CRL_HAS_EXPIRED
	X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD
	X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD
	X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD
	X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD
	X509_V_ERR_OUT_OF_MEM
	X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT
	X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN
	X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY
	X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE
	X509_V_ERR_CERT_CHAIN_TOO_LONG
	X509_V_ERR_CERT_REVOKED
	X509_V_ERR_INVALID_CA
	X509_V_ERR_PATH_LENGTH_EXCEEDED
	X509_V_ERR_INVALID_PURPOSE
	X509_V_ERR_CERT_UNTRUSTED
	X509_V_ERR_CERT_REJECTED
	X509_V_ERR_SUBJECT_ISSUER_MISMATCH
	X509_V_ERR_AKID_SKID_MISMATCH
	X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH
	X509_V_ERR_KEYUSAGE_NO_CERTSIGN
	X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER
	X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION
	X509_V_ERR_KEYUSAGE_NO_CRL_SIGN
	X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION
	X509_V_ERR_INVALID_NON_CA
	X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED
	X509_V_ERR_PROXY_SUBJECT_INVALID
	X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE
	X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED
	X509_V_ERR_INVALID_EXTENSION
	X509_V_ERR_INVALID_POLICY_EXTENSION
	X509_V_ERR_NO_EXPLICIT_POLICY
	X509_V_ERR_DIFFERENT_CRL_SCOPE
	X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE
	X509_V_ERR_UNNESTED_RESOURCE
	X509_V_ERR_PERMITTED_VIOLATION
	X509_V_ERR_EXCLUDED_VIOLATION
	X509_V_ERR_SUBTREE_MINMAX
	X509_V_ERR_APPLICATION_VERIFICATION
	X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE
	X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX
	X509_V_ERR_UNSUPPORTED_NAME_SYNTAX
	X509_V_ERR_CRL_PATH_VALIDATION_ERROR
	X509_V_ERR_PATH_LOOP
	X509_V_ERR_SUITE_B_INVALID_VERSION
	X509_V_ERR_SUITE_B_INVALID_ALGORITHM
	X509_V_ERR_SUITE_B_INVALID_CURVE
	X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM
	X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED
	X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256
	X509_V_ERR_HOSTNAME_MISMATCH
	X509_V_ERR_EMAIL_MISMATCH
	X509_V_ERR_IP_ADDRESS_MISMATCH
	X509_V_ERR_DANE_NO_MATCH
	X509_V_ERR_EE_KEY_TOO_SMALL
	X509_ERR_CA_KEY_TOO_SMALL
	X509_ERR_CA_MD_TOO_WEAK
	X509_V_ERR_INVALID_CALL
	X509_V_ERR_STORE_LOOKUP
	X509_V_ERR_NO_VALID_SCTS
	X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION
	X509_V_ERR_OCSP_VERIFY_NEEDED
	X509_V_ERR_OCSP_VERIFY_FAILED
	X509_V_ERR_OCSP_CERT_UNKNOWN

	BUGS
	BUGS

	SEE ALSO
	SEE ALSO

	HISTORY
	HISTORY

	COPYRIGHT
	COPYRIGHT

