
ACCESS(2) Linux Programmer’s Manual ACCESS(2)

NAME
access, faccessat - check user’s permissions for a file

SYNOPSIS
#include <unistd.h>

int access(const char *pathname, int mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int faccessat(int dirfd , const char *pathname, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

faccessat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
access() checks whether the calling process can access the file pathname. If pathname is a symbolic link,
it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value F_OK, or a mask
consisting of the bitwise OR of one or more of R_OK, W_OK, and X_OK. F_OK tests for the existence
of the file. R_OK, W_OK, and X_OK test whether the file exists and grants read, write, and execute per-
missions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effective IDs as is done
when actually attempting an operation (e.g., open(2)) on the file. Similarly, for the root user, the check uses
the set of permitted capabilities rather than the set of effective capabilities; and for non-root users, the
check uses an empty set of capabilities.

This allows set-user-ID programs and capability-endowed programs to easily determine the invoking user’s
authority. In other words, access() does not answer the "can I read/write/execute this file?" question. It an-
swers a slightly different question: "(assuming I’m a setuid binary) can the user who invoked me
read/write/execute this file?", which gives set-user-ID programs the possibility to prevent malicious users
from causing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is successful for a regu-
lar file if execute permission is enabled for any of the file owner, group, or other.

faccessat()
The faccessat() system call operates in exactly the same way as access(), except for the differences de-
scribed here.

If the pathname given in pathname is relative, then it is interpreted relative to the directory referred to by
the file descriptor dirfd (rather than relative to the current working directory of the calling process, as is
done by access() for a relative pathname).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is interpreted relative to
the current working directory of the calling process (like access()).

If pathname is absolute, then dirfd is ignored.

flags is constructed by ORing together zero or more of the following values:

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, faccessat() uses the real
IDs (like access()).

Linux 2016-03-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open

ACCESS(2) Linux Programmer’s Manual ACCESS(2)

AT_SYMLINK_NOFOLLOW
If pathname is a symbolic link, do not dereference it: instead return information about the link it-
self.

See openat(2) for an explanation of the need for faccessat().

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists), zero is returned. On
error (at least one bit in mode asked for a permission that is denied, or mode is F_OK and the file does not
exist, or some other error occurred), -1 is returned, and errno is set appropriately.

ERRORS
access() and faccessat() shall fail if:

EACCES
The requested access would be denied to the file, or search permission is denied for one of the di-
rectories in the path prefix of pathname. (See also path_resolution(7).)

ELOOP
Too many symbolic links were encountered in resolving pathname.

ENAMETOOLONG
pathname is too long.

ENOENT
A component of pathname does not exist or is a dangling symbolic link.

ENOTDIR
A component used as a directory in pathname is not, in fact, a directory.

EROFS
Write permission was requested for a file on a read-only filesystem.

access() and faccessat() may fail if:

EFAULT
pathname points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EIO An I/O error occurred.

ENOMEM
Insufficient kernel memory was available.

ETXTBSY
Write access was requested to an executable which is being executed.

The following additional errors can occur for faccessat():

EBADF
dirfd is not a valid file descriptor.

EINVAL
Invalid flag specified in flags.

ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than a directory.

VERSIONS
faccessat() was added to Linux in kernel 2.6.16; library support was added to glibc in version 2.4.

CONFORMING TO
access(): SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

faccessat(): POSIX.1-2008.

Linux 2016-03-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/openat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution

ACCESS(2) Linux Programmer’s Manual ACCESS(2)

NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file before actually do-
ing so using open(2) creates a security hole, because the user might exploit the short time interval between
checking and opening the file to manipulate it. For this reason, the use of this system call should be
avoided. (In the example just described, a safer alternative would be to temporarily switch the process’s ef-
fective user ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on a symbolic link, use
faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some of the other access
types in mode are permitted.

If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 permits an implementa-
tion to indicate success for an X_OK check even if none of the execute file permission bits are set. Linux
does not do this.

A file is accessible only if the permissions on each of the directories in the path prefix of pathname grant
search (i.e., execute) access. If any directory is inaccessible, then the access() call fails, regardless of the
permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be writable,
it probably means that files can be created in the directory, and not that the directory can be written as a file.
Similarly, a DOS file may be found to be "executable," but the execve(2) call will still fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled, because UID map-
ping is done on the server and hidden from the client, which checks permissions. (NFS versions 3 and
higher perform the check on the server.) Similar problems can occur to FUSE mounts.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EACCESS and AT_SYM-
LINK_NOFOLLOW flags are actually implemented within the glibc wrapper function for faccessat(). If
either of these flags is specified, then the wrapper function employs fstatat(2) to determine access permis-
sions.

Glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and AT_SYMLINK_NO-
FOLLOW flags are not specified), the glibc wrapper function falls back to the use of access(). When
pathname is a relative pathname, glibc constructs a pathname based on the symbolic link in /proc/self/fd
that corresponds to the dirfd argument.

BUGS
In kernel 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for superuser. If all cat-
egories of execute permission are disabled for a nondirectory file, then the only access() test that returns -1
is when mode is specified as just X_OK; if R_OK or W_OK is also specified in mode, then access() re-
turns 0 for such files. Early 2.6 kernels (up to and including 2.6.3) also behaved in the same way as kernel
2.4.

In kernels before 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was used to mount(2)
the underlying filesystem. Since kernel 2.6.20, the MS_NOEXEC flag is honored.

SEE ALSO
chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7), path_resolution(7),
symlink(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2016-03-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fstatat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setgid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setuid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/euidaccess
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/credentials
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/symlink
https://www.kernel.org/doc/man

	ACCESS(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS
	Since glibc 2.10:

	DESCRIPTION
	DESCRIPTION
	faccessat()
	faccessat()

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	C library/kernel differences
	C library/kernel differences

	Glibc notes
	Glibc notes

	BUGS
	BUGS

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

