
KCMP(2) Linux Programmer’s Manual KCMP(2)

NAME
kcmp - compare two processes to determine if they share a kernel resource

SYNOPSIS
#include <linux/kcmp.h>

int kcmp(pid_t pid1, pid_t pid2, int type,
unsigned long idx1, unsigned long idx2);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
The kcmp() system call can be used to check whether the two processes identified by pid1 and pid2 share
a kernel resource such as virtual memory, file descriptors, and so on.

Permission to employ kcmp() is governed by ptrace access mode PTRACE_MODE_READ_REAL-
CREDS checks against both pid1 and pid2; see ptrace(2).

The type argument specifies which resource is to be compared in the two processes. It has one of the fol-
lowing values:

KCMP_FILE
Check whether a file descriptor idx1 in the process pid1 refers to the same open file description
(see open(2)) as file descriptor idx2 in the process pid2. The existence of two file descriptors that
refer to the same open file description can occur as a result of dup(2) (and similar) fork(2), or pass-
ing file descriptors via a domain socket (see unix(7)).

KCMP_FILES
Check whether the processes share the same set of open file descriptors. The arguments idx1 and
idx2 are ignored. See the discussion of the CLONE_FILES flag in clone(2).

KCMP_FS
Check whether the processes share the same filesystem information (i.e., file mode creation mask,
working directory, and filesystem root). The arguments idx1 and idx2 are ignored. See the discus-
sion of the CLONE_FS flag in clone(2).

KCMP_IO
Check whether the processes share I/O context. The arguments idx1 and idx2 are ignored. See the
discussion of the CLONE_IO flag in clone(2).

KCMP_SIGHAND
Check whether the processes share the same table of signal dispositions. The arguments idx1 and
idx2 are ignored. See the discussion of the CLONE_SIGHAND flag in clone(2).

KCMP_SYSVSEM
Check whether the processes share the same list of System V semaphore undo operations. The ar-
guments idx1 and idx2 are ignored. See the discussion of the CLONE_SYSVSEM flag in
clone(2).

KCMP_VM
Check whether the processes share the same address space. The arguments idx1 and idx2 are ig-
nored. See the discussion of the CLONE_VM flag in clone(2).

KCMP_EPOLL_TFD (since Linux 4.13)
Check whether the file descriptor idx1 of the process pid1 is present in the epoll(7) instance de-
scribed by idx2 of the process pid2. The argument idx2 is a pointer to a structure where the target
file is described. This structure has the form:

struct kcmp_epoll_slot {
__u32 efd;
__u32 tfd;
__u64 toff;
};

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/unix
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll

KCMP(2) Linux Programmer’s Manual KCMP(2)

Within this structure, efd is an epoll file descriptor returned from epoll_create(2), tfd is a target file descrip-
tor number, and toff is a target file offset counted from zero. Several different targets may be registered
with the same file descriptor number and setting a specific offset helps to investigate each of them.

Note the kcmp() is not protected against false positives which may occur if the processes are currently run-
ning. One should stop the processes by sending SIGSTOP (see signal(7)) prior to inspection with this sys-
tem call to obtain meaningful results.

RETURN VALUE
The return value of a successful call to kcmp() is simply the result of arithmetic comparison of kernel
pointers (when the kernel compares resources, it uses their memory addresses).

The easiest way to explain is to consider an example. Suppose that v1 and v2 are the addresses of appropri-
ate resources, then the return value is one of the following:

0 v1 is equal to v2; in other words, the two processes share the resource.

1 v1 is less than v2.

2 v1 is greater than v2.

3 v1 is not equal to v2, but ordering information is unavailable.

On error, -1 is returned, and errno is set appropriately.

kcmp() was designed to return values suitable for sorting. This is particularly handy if one needs to com-
pare a large number of file descriptors.

ERRORS
EBADF

type is KCMP_FILE and fd1 or fd2 is not an open file descriptor.

EINVAL
type is invalid.

EPERM
Insufficient permission to inspect process resources. The CAP_SYS_PTRACE capability is re-
quired to inspect processes that you do not own. Other ptrace limitations may also apply, such as
CONFIG_SECURITY_YAMA, which, when /proc/sys/kernel/yama/ptrace_scope is 2, limits
kcmp() to child processes; see ptrace(2).

ESRCH
Process pid1 or pid2 does not exist.

EFAULT
The epoll slot addressed by idx2 is outside of the user’s address space.

ENOENT
The target file is not present in epoll(7) instance.

VERSIONS
The kcmp() system call first appeared in Linux 3.5.

CONFORMING TO
kcmp() is Linux-specific and should not be used in programs intended to be portable.

NOTES
Glibc does not provide a wrapper for this system call; call it using syscall(2).

This system call is available only if the kernel was configured with CONFIG_CHECKPOINT_RE-
STORE. The main use of the system call is for the checkpoint/restore in user space (CRIU) feature. The
alternative to this system call would have been to expose suitable process information via the proc(5)
filesystem; this was deemed to be unsuitable for security reasons.

See clone(2) for some background information on the shared resources referred to on this page.

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/signal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ptrace
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/syscall
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone

KCMP(2) Linux Programmer’s Manual KCMP(2)

EXAMPLE
The program below uses kcmp() to test whether pairs of file descriptors refer to the same open file descrip-
tion. The program tests different cases for the file descriptor pairs, as described in the program output. An
example run of the program is as follows:

$./a.out
Parent PID is 1144
Parent opened file on FD 3

PID of child of fork() is 1145
Compare duplicate FDs from different processes:

kcmp(1145, 1144, KCMP_FILE, 3, 3) ==> same
Child opened file on FD 4

Compare FDs from distinct open()s in same process:
kcmp(1145, 1145, KCMP_FILE, 3, 4) ==> different

Child duplicated FD 3 to create FD 5
Compare duplicated FDs in same process:

kcmp(1145, 1145, KCMP_FILE, 3, 5) ==> same

Program source

#define _GNU_SOURCE
#include <sys/syscall.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <linux/kcmp.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

static int
kcmp(pid_t pid1, pid_t pid2, int type,
unsigned long idx1, unsigned long idx2)
{
return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
}

static void
test_kcmp(char *msg, id_t pid1, pid_t pid2, int fd_a, int fd_b)
{
printf("\t%s\n", msg);
printf("\t\tkcmp(%ld, %ld, KCMP_FILE, %d, %d) ==> %s\n",
(long) pid1, (long) pid2, fd_a, fd_b,
(kcmp(pid1, pid2, KCMP_FILE, fd_a, fd_b) == 0) ?
"same" : "different");
}

int
main(int argc, char *argv[])
{
int fd1, fd2, fd3;
char pathname[] = "/tmp/kcmp.test";

fd1 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd1 == -1)

Linux 2017-09-15 3

KCMP(2) Linux Programmer’s Manual KCMP(2)

errExit("open");

printf("Parent PID is %ld\n", (long) getpid());
printf("Parent opened file on FD %d\n\n", fd1);

switch (fork()) {
case -1:
errExit("fork");

case 0:
printf("PID of child of fork() is %ld\n", (long) getpid());

test_kcmp("Compare duplicate FDs from different processes:",
getpid(), getppid(), fd1, fd1);

fd2 = open(pathname, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);
if (fd2 == -1)
errExit("open");
printf("Child opened file on FD %d\n", fd2);

test_kcmp("Compare FDs from distinct open()s in same process:",
getpid(), getpid(), fd1, fd2);

fd3 = dup(fd1);
if (fd3 == -1)
errExit("dup");
printf("Child duplicated FD %d to create FD %d\n", fd1, fd3);

test_kcmp("Compare duplicated FDs in same process:",
getpid(), getpid(), fd1, fd3);
break;

default:
wait(NULL);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
clone(2), unshare(2)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unshare
https://www.kernel.org/doc/man

	KCMP(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

