
MBIND(2) Linux Programmer’s Manual MBIND(2)

NAME
mbind - set memory policy for a memory range

SYNOPSIS
#include <numaif.h>

long mbind(void *addr, unsigned long len, int mode,
const unsigned long *nodemask, unsigned long maxnode,
unsigned flags);

Link with -lnuma.

DESCRIPTION
mbind() sets the NUMA memory policy, which consists of a policy mode and zero or more nodes, for the
memory range starting with addr and continuing for len bytes. The memory policy defines from which
node memory is allocated.

If the memory range specified by the addr and len arguments includes an "anonymous" region of mem-
ory—that is a region of memory created using the mmap(2) system call with the MAP_ANONYMOUS—
or a memory-mapped file, mapped using the mmap(2) system call with the MAP_PRIVATE flag, pages
will be allocated only according to the specified policy when the application writes (stores) to the page. For
anonymous regions, an initial read access will use a shared page in the kernel containing all zeros. For a
file mapped with MAP_PRIVATE, an initial read access will allocate pages according to the memory pol-
icy of the thread that causes the page to be allocated. This may not be the thread that called mbind().

The specified policy will be ignored for any MAP_SHARED mappings in the specified memory range.
Rather the pages will be allocated according to the memory policy of the thread that caused the page to be
allocated. Again, this may not be the thread that called mbind().

If the specified memory range includes a shared memory region created using the shmget(2) system call
and attached using the shmat(2) system call, pages allocated for the anonymous or shared memory region
will be allocated according to the policy specified, regardless of which process attached to the shared mem-
ory segment causes the allocation. If, however, the shared memory region was created with the
SHM_HUGETLB flag, the huge pages will be allocated according to the policy specified only if the page
allocation is caused by the process that calls mbind() for that region.

By default, mbind() has an effect only for new allocations; if the pages inside the range have been already
touched before setting the policy, then the policy has no effect. This default behavior may be overridden by
the MPOL_MF_MOVE and MPOL_MF_MOVE_ALL flags described below.

The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND, MPOL_INTERLEAVE,
MPOL_PREFERRED, or MPOL_LOCAL (which are described in detail below). All policy modes ex-
cept MPOL_DEFAULT require the caller to specify the node or nodes to which the mode applies, via the
nodemask argument.

The mode argument may also include an optional mode flag. The supported mode flags are:

MPOL_F_STATIC_NODES (since Linux-2.6.26)
A nonempty nodemask specifies physical node IDs. Linux does not remap the nodemask when
the thread moves to a different cpuset context, nor when the set of nodes allowed by the thread’s
current cpuset context changes.

MPOL_F_RELATIVE_NODES (since Linux-2.6.26)
A nonempty nodemask specifies node IDs that are relative to the set of node IDs allowed by the
thread’s current cpuset.

nodemask points to a bit mask of nodes containing up to maxnode bits. The bit mask size is rounded to the
next multiple of sizeof(unsigned long), but the kernel will use bits only up to maxnode. A NULL value of
nodemask or a maxnode value of zero specifies the empty set of nodes. If the value of maxnode is zero, the
nodemask argument is ignored. Where a nodemask is required, it must contain at least one node that is on-
line, allowed by the thread’s current cpuset context (unless the MPOL_F_STATIC_NODES mode flag is
specified), and contains memory.

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmget
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmat

MBIND(2) Linux Programmer’s Manual MBIND(2)

The mode argument must include one of the following values:

MPOL_DEFAULT
This mode requests that any nondefault policy be removed, restoring default behavior. When ap-
plied to a range of memory via mbind(), this means to use the thread memory policy, which may
have been set with set_mempolicy(2). If the mode of the thread memory policy is also
MPOL_DEFAULT, the system-wide default policy will be used. The system-wide default policy
allocates pages on the node of the CPU that triggers the allocation. For MPOL_DEFAULT, the
nodemask and maxnode arguments must be specify the empty set of nodes.

MPOL_BIND
This mode specifies a strict policy that restricts memory allocation to the nodes specified in node-
mask. If nodemask specifies more than one node, page allocations will come from the node with
sufficient free memory that is closest to the node where the allocation takes place. Pages will not
be allocated from any node not specified in the IR nodemask . (Before Linux 2.6.26, page alloca-
tions came from the node with the lowest numeric node ID first, until that node contained no free
memory. Allocations then came from the node with the next highest node ID specified in node-
mask and so forth, until none of the specified nodes contained free memory.)

MPOL_INTERLEAVE
This mode specifies that page allocations be interleaved across the set of nodes specified in node-
mask. This optimizes for bandwidth instead of latency by spreading out pages and memory ac-
cesses to those pages across multiple nodes. To be effective the memory area should be fairly
large, at least 1 MB or bigger with a fairly uniform access pattern. Accesses to a single page of
the area will still be limited to the memory bandwidth of a single node.

MPOL_PREFERRED
This mode sets the preferred node for allocation. The kernel will try to allocate pages from this
node first and fall back to other nodes if the preferred nodes is low on free memory. If nodemask
specifies more than one node ID, the first node in the mask will be selected as the preferred node.
If the nodemask and maxnode arguments specify the empty set, then the memory is allocated on
the node of the CPU that triggered the allocation.

MPOL_LOCAL (since Linux 3.8)
This mode specifies "local allocation"; the memory is allocated on the node of the CPU that trig-
gered the allocation (the "local node"). The nodemask and maxnode arguments must specify the
empty set. If the "local node" is low on free memory, the kernel will try to allocate memory from
other nodes. The kernel will allocate memory from the "local node" whenever memory for this
node is available. If the "local node" is not allowed by the thread’s current cpuset context, the ker-
nel will try to allocate memory from other nodes. The kernel will allocate memory from the "local
node" whenever it becomes allowed by the thread’s current cpuset context. By contrast,
MPOL_DEFAULT reverts to the memory policy of the thread (which may be set via set_mempol-
icy(2)); that policy may be something other than "local allocation".

If MPOL_MF_STRICT is passed in flags and mode is not MPOL_DEFAULT, then the call fails with the
error EIO if the existing pages in the memory range don’t follow the policy.

If MPOL_MF_MOVE is specified in flags, then the kernel will attempt to move all the existing pages in
the memory range so that they follow the policy. Pages that are shared with other processes will not be
moved. If MPOL_MF_STRICT is also specified, then the call fails with the error EIO if some pages
could not be moved.

If MPOL_MF_MOVE_ALL is passed in flags, then the kernel will attempt to move all existing pages in
the memory range regardless of whether other processes use the pages. The calling thread must be privi-
leged (CAP_SYS_NICE) to use this flag. If MPOL_MF_STRICT is also specified, then the call fails
with the error EIO if some pages could not be moved.

RETURN VALUE
On success, mbind() returns 0; on error, -1 is returned and errno is set to indicate the error.

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy

MBIND(2) Linux Programmer’s Manual MBIND(2)

ERRORS
EFAULT

Part or all of the memory range specified by nodemask and maxnode points outside your accessi-
ble address space. Or, there was an unmapped hole in the specified memory range specified by
addr and len.

EINVAL
An invalid value was specified for flags or mode; or addr + len was less than addr; or addr is not
a multiple of the system page size. Or, mode is MPOL_DEFAULT and nodemask specified a
nonempty set; or mode is MPOL_BIND or MPOL_INTERLEAVE and nodemask is empty. Or,
maxnode exceeds a kernel-imposed limit. Or, nodemask specifies one or more node IDs that are
greater than the maximum supported node ID. Or, none of the node IDs specified by nodemask
are on-line and allowed by the thread’s current cpuset context, or none of the specified nodes con-
tain memory. Or, the mode argument specified both MPOL_F_STATIC_NODES and
MPOL_F_RELATIVE_NODES.

EIO MPOL_MF_STRICT was specified and an existing page was already on a node that does not fol-
low the policy; or MPOL_MF_MOVE or MPOL_MF_MOVE_ALL was specified and the ker-
nel was unable to move all existing pages in the range.

ENOMEM
Insufficient kernel memory was available.

EPERM
The flags argument included the MPOL_MF_MOVE_ALL flag and the caller does not have the
CAP_SYS_NICE privilege.

VERSIONS
The mbind() system call was added to the Linux kernel in version 2.6.7.

CONFORMING TO
This system call is Linux-specific.

NOTES
For information on library support, see numa(7).

NUMA policy is not supported on a memory-mapped file range that was mapped with the MAP_SHARED
flag.

The MPOL_DEFAULT mode can have different effects for mbind() and set_mempolicy(2). When
MPOL_DEFAULT is specified for set_mempolicy(2), the thread’s memory policy reverts to the system de-
fault policy or local allocation. When MPOL_DEFAULT is specified for a range of memory using
mbind(), any pages subsequently allocated for that range will use the thread’s memory policy, as set by
set_mempolicy(2). This effectively removes the explicit policy from the specified range, "falling back" to a
possibly nondefault policy. To select explicit "local allocation" for a memory range, specify a mode of
MPOL_LOCAL or MPOL_PREFERRED with an empty set of nodes. This method will work for
set_mempolicy(2), as well.

Support for huge page policy was added with 2.6.16. For interleave policy to be effective on huge page
mappings the policied memory needs to be tens of megabytes or larger.

MPOL_MF_STRICT is ignored on huge page mappings.

MPOL_MF_MOVE and MPOL_MF_MOVE_ALL are available only on Linux 2.6.16 and later.

SEE ALSO
get_mempolicy(2), getcpu(2), mmap(2), set_mempolicy(2), shmat(2), shmget(2), numa(3), cpuset(7),
numa(7), numactl(8)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/numa
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/get_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getcpu
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mmap
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/set_mempolicy
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shmget
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/cpuset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/numa
https://www.kernel.org/doc/man

	MBIND(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

