
RECV (2) Linux Programmer’s Manual RECV (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int sockfd , void *buf , size_t len, int flags);

ssize_t recvfrom(int sockfd , void *buf , size_t len, int flags,
struct sockaddr *src_addr, socklen_t *addrlen);

ssize_t recvmsg(int sockfd , struct msghdr *msg, int flags);

DESCRIPTION
The recv(), recvfrom(), and recvmsg() calls are used to receive messages from a socket. They may be
used to receive data on both connectionless and connection-oriented sockets. This page first describes com-
mon features of all three system calls, and then describes the differences between the calls.

The only difference between recv() and read(2) is the presence of flags. With a zero flags argument,
recv() is generally equivalent to read(2) (but see NOTES). Also, the following call

recv(sockfd, buf, len, flags);

is equivalent to

recvfrom(sockfd, buf, len, flags, NULL, NULL);

All three calls return the length of the message on successful completion. If a message is too long to fit in
the supplied buffer, excess bytes may be discarded depending on the type of socket the message is received
from.

If no messages are available at the socket, the receive calls wait for a message to arrive, unless the socket is
nonblocking (see fcntl(2)), in which case the value -1 is returned and the external variable errno is set to
EAGAIN or EWOULDBLOCK. The receive calls normally return any data available, up to the requested
amount, rather than waiting for receipt of the full amount requested.

An application can use select(2), poll(2), or epoll(7) to determine when more data arrives on a socket.

The flags argument
The flags argument is formed by ORing one or more of the following values:

MSG_CMSG_CLOEXEC (recvmsg() only; since Linux 2.6.23)
Set the close-on-exec flag for the file descriptor received via a UNIX domain file descriptor using
the SCM_RIGHTS operation (described in unix(7)). This flag is useful for the same reasons as
the O_CLOEXEC flag of open(2).

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, the call fails with the error EAGAIN
or EWOULDBLOCK. This provides similar behavior to setting the O_NONBLOCK flag (via
the fcntl(2) F_SETFL operation), but differs in that MSG_DONTWAIT is a per-call option,
whereas O_NONBLOCK is a setting on the open file description (see open(2)), which will affect
all threads in the calling process and as well as other processes that hold file descriptors referring
to the same open file description.

MSG_ERRQUEUE (since Linux 2.2)
This flag specifies that queued errors should be received from the socket error queue. The error is
passed in an ancillary message with a type dependent on the protocol (for IPv4 IP_RECVERR).
The user should supply a buffer of sufficient size. See cmsg(3) and ip(7) for more information.
The payload of the original packet that caused the error is passed as normal data via msg_iovec.
The original destination address of the datagram that caused the error is supplied via msg_name.

The error is supplied in a sock_extended_err structure:

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/unix
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/ip

RECV (2) Linux Programmer’s Manual RECV (2)

#define SO_EE_ORIGIN_NONE 0
#define SO_EE_ORIGIN_LOCAL 1
#define SO_EE_ORIGIN_ICMP 2
#define SO_EE_ORIGIN_ICMP6 3

struct sock_extended_err
{
uint32_t ee_errno; /* error number */
uint8_t ee_origin; /* where the error originated */
uint8_t ee_type; /* type */
uint8_t ee_code; /* code */
uint8_t ee_pad; /* padding */
uint32_t ee_info; /* additional information */
uint32_t ee_data; /* other data */
/* More data may follow */
};

struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued error. ee_origin is the origin code of where the
error originated. The other fields are protocol-specific. The macro SOCK_EE_OFFENDER re-
turns a pointer to the address of the network object where the error originated from given a pointer
to the ancillary message. If this address is not known, the sa_family member of the sockaddr con-
tains AF_UNSPEC and the other fields of the sockaddr are undefined. The payload of the packet
that caused the error is passed as normal data.

For local errors, no address is passed (this can be checked with the cmsg_len member of the cms-
ghdr). For error receives, the MSG_ERRQUEUE flag is set in the msghdr. After an error has
been passed, the pending socket error is regenerated based on the next queued error and will be
passed on the next socket operation.

MSG_OOB
This flag requests receipt of out-of-band data that would not be received in the normal data stream.
Some protocols place expedited data at the head of the normal data queue, and thus this flag can-
not be used with such protocols.

MSG_PEEK
This flag causes the receive operation to return data from the beginning of the receive queue with-
out removing that data from the queue. Thus, a subsequent receive call will return the same data.

MSG_TRUNC (since Linux 2.2)
For raw (AF_PACKET), Internet datagram (since Linux 2.4.27/2.6.8), netlink (since Linux
2.6.22), and UNIX datagram (since Linux 3.4) sockets: return the real length of the packet or data-
gram, even when it was longer than the passed buffer.

For use with Internet stream sockets, see tcp(7).

MSG_WAITALL (since Linux 2.2)
This flag requests that the operation block until the full request is satisfied. However, the call may
still return less data than requested if a signal is caught, an error or disconnect occurs, or the next
data to be received is of a different type than that returned. This flag has no effect for datagram
sockets.

recvfrom()
recvfrom() places the received message into the buffer buf . The caller must specify the size of the buffer
in len.

If src_addr is not NULL, and the underlying protocol provides the source address of the message, that
source address is placed in the buffer pointed to by src_addr. In this case, addrlen is a value-result argu-
ment. Before the call, it should be initialized to the size of the buffer associated with src_addr. Upon re-
turn, addrlen is updated to contain the actual size of the source address. The returned address is truncated

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/tcp

RECV (2) Linux Programmer’s Manual RECV (2)

if the buffer provided is too small; in this case, addrlen will return a value greater than was supplied to the
call.

If the caller is not interested in the source address, src_addr and addrlen should be specified as NULL.

recv()
The recv() call is normally used only on a connected socket (see connect(2)). It is equivalent to the call:

recvfrom(fd, buf, len, flags, NULL, 0);

recvmsg()
The recvmsg() call uses a msghdr structure to minimize the number of directly supplied arguments. This
structure is defined as follows in <sys/socket.h>:

struct iovec { /* Scatter/gather array items */
void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes to transfer */
};

struct msghdr {
void *msg_name; /* optional address */
socklen_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data, see below */
size_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */
};

The msg_name field points to a caller-allocated buffer that is used to return the source address if the socket
is unconnected. The caller should set msg_namelen to the size of this buffer before this call; upon return
from a successful call, msg_namelen will contain the length of the returned address. If the application does
not need to know the source address, msg_name can be specified as NULL.

The fields msg_iov and msg_iovlen describe scatter-gather locations, as discussed in readv(2).

The field msg_control, which has length msg_controllen, points to a buffer for other protocol control-re-
lated messages or miscellaneous ancillary data. When recvmsg() is called, msg_controllen should contain
the length of the available buffer in msg_control; upon return from a successful call it will contain the
length of the control message sequence.

The messages are of the form:

struct cmsghdr {
size_t cmsg_len; /* Data byte count, including header
(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */
/* followed by
unsigned char cmsg_data[]; */
};

Ancillary data should be accessed only by the macros defined in cmsg(3).

As an example, Linux uses this ancillary data mechanism to pass extended errors, IP options, or file de-
scriptors over UNIX domain sockets.

The msg_flags field in the msghdr is set on return of recvmsg(). It can contain several flags:

MSG_EOR
indicates end-of-record; the data returned completed a record (generally used with sockets of type
SOCK_SEQPACKET).

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/readv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg

RECV (2) Linux Programmer’s Manual RECV (2)

MSG_TRUNC
indicates that the trailing portion of a datagram was discarded because the datagram was larger
than the buffer supplied.

MSG_CTRUNC
indicates that some control data were discarded due to lack of space in the buffer for ancillary
data.

MSG_OOB
is returned to indicate that expedited or out-of-band data were received.

MSG_ERRQUEUE
indicates that no data was received but an extended error from the socket error queue.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred. In the event of an error, errno is
set to indicate the error.

When a stream socket peer has performed an orderly shutdown, the return value will be 0 (the traditional
"end-of-file" return).

Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit zero-length datagrams.
When such a datagram is received, the return value is 0.

The value 0 may also be returned if the requested number of bytes to receive from a stream socket was 0.

ERRORS
These are some standard errors generated by the socket layer. Additional errors may be generated and re-
turned from the underlying protocol modules; see their manual pages.

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the receive operation would block, or a receive timeout had
been set and the timeout expired before data was received. POSIX.1 allows either error to be re-
turned for this case, and does not require these constants to have the same value, so a portable ap-
plication should check for both possibilities.

EBADF
The argument sockfd is an invalid file descriptor.

ECONNREFUSED
A remote host refused to allow the network connection (typically because it is not running the re-
quested service).

EFAULT
The receive buffer pointer(s) point outside the process’s address space.

EINTR
The receive was interrupted by delivery of a signal before any data were available; see signal(7).

EINVAL
Invalid argument passed.

ENOMEM
Could not allocate memory for recvmsg().

ENOTCONN
The socket is associated with a connection-oriented protocol and has not been connected (see con-
nect(2) and accept(2)).

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.4BSD (these interfaces first appeared in 4.2BSD).

POSIX.1 describes only the MSG_OOB, MSG_PEEK, and MSG_WAITALL flags.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/signal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept

RECV (2) Linux Programmer’s Manual RECV (2)

NOTES
If a zero-length datagram is pending, read(2) and recv() with a flags argument of zero provide different be-
havior. In this circumstance, read(2) has no effect (the datagram remains pending), while recv() consumes
the pending datagram.

The socklen_t type was invented by POSIX. See also accept(2).

According to POSIX.1, the msg_controllen field of the msghdr structure should be typed as socklen_t, but
glibc currently types it as size_t.

See recvmmsg(2) for information about a Linux-specific system call that can be used to receive multiple
datagrams in a single call.

EXAMPLE
An example of the use of recvfrom() is shown in getaddrinfo(3).

SEE ALSO
fcntl(2), getsockopt(2), read(2), recvmmsg(2), select(2), shutdown(2), socket(2), cmsg(3), sockatmark(3),
ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getaddrinfo
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getsockopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/shutdown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sockatmark
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/ip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/ipv6
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/tcp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/udp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/unix
https://www.kernel.org/doc/man

	RECV(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	The flags argument
	The flags argument

	recvfrom()
	recvfrom()

	recv()
	recv()

	recvmsg()
	recvmsg()

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	EXAMPLE
	EXAMPLE

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

