
RENAME(2) Linux Programmer’s Manual RENAME(2)

NAME
rename, renameat, renameat2 - change the name or location of a file

SYNOPSIS
#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <stdio.h>

int renameat(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath);

int renameat2(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath, unsigned int flags);

Note: There is no glibc wrapper for renameat2(); see NOTES.

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

renameat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
rename() renames a file, moving it between directories if required. Any other hard links to the file (as cre-
ated using link(2)) are unaffected. Open file descriptors for oldpath are also unaffected.

Various restrictions determine whether or not the rename operation succeeds: see ERRORS below.

If newpath already exists, it will be atomically replaced, so that there is no point at which another process
attempting to access newpath will find it missing. However, there will probably be a window in which both
oldpath and newpath refer to the file being renamed.

If oldpath and newpath are existing hard links referring to the same file, then rename() does nothing, and
returns a success status.

If newpath exists but the operation fails for some reason, rename() guarantees to leave an instance of new-
path in place.

oldpath can specify a directory. In this case, newpath must either not exist, or it must specify an empty di-
rectory.

If oldpath refers to a symbolic link, the link is renamed; if newpath refers to a symbolic link, the link will
be overwritten.

renameat()
The renameat() system call operates in exactly the same way as rename(), except for the differences de-
scribed here.

If the pathname given in oldpath is relative, then it is interpreted relative to the directory referred to by the
file descriptor olddirfd (rather than relative to the current working directory of the calling process, as is
done by rename() for a relative pathname).

If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is interpreted relative to
the current working directory of the calling process (like rename()).

If oldpath is absolute, then olddirfd is ignored.

The interpretation of newpath is as for oldpath, except that a relative pathname is interpreted relative to the
directory referred to by the file descriptor newdirfd .

See openat(2) for an explanation of the need for renameat().

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/link
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/openat

RENAME(2) Linux Programmer’s Manual RENAME(2)

renameat2()
renameat2() has an additional flags argument. A renameat2() call with a zero flags argument is equiva-
lent to renameat().

The flags argument is a bit mask consisting of zero or more of the following flags:

RENAME_EXCHANGE
Atomically exchange oldpath and newpath. Both pathnames must exist but may be of different
types (e.g., one could be a non-empty directory and the other a symbolic link).

RENAME_NOREPLACE
Don’t overwrite newpath of the rename. Return an error if newpath already exists.

RENAME_NOREPLACE can’t be employed together with RENAME_EXCHANGE.

RENAME_WHITEOUT (since Linux 3.18)
This operation makes sense only for overlay/union filesystem implementations.

Specifying RENAME_WHITEOUT creates a "whiteout" object at the source of the rename at
the same time as performing the rename. The whole operation is atomic, so that if the rename suc-
ceeds then the whiteout will also have been created.

A "whiteout" is an object that has special meaning in union/overlay filesystem constructs. In these
constructs, multiple layers exist and only the top one is ever modified. A whiteout on an upper
layer will effectively hide a matching file in the lower layer, making it appear as if the file didn’t
exist.

When a file that exists on the lower layer is renamed, the file is first copied up (if not already on
the upper layer) and then renamed on the upper, read-write layer. At the same time, the source file
needs to be "whiteouted" (so that the version of the source file in the lower layer is rendered invisi-
ble). The whole operation needs to be done atomically.

When not part of a union/overlay, the whiteout appears as a character device with a {0,0} device
number.

RENAME_WHITEOUT requires the same privileges as creating a device node (i.e., the
CAP_MKNOD capability).

RENAME_WHITEOUT can’t be employed together with RENAME_EXCHANGE.

RENAME_WHITEOUT requires support from the underlying filesystem. Among the filesys-
tems that provide that support are shmem (since Linux 3.18), ext4 (since Linux 3.18), and XFS
(since Linux 4.1).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS
EACCES

Write permission is denied for the directory containing oldpath or newpath, or, search permission
is denied for one of the directories in the path prefix of oldpath or newpath, or oldpath is a direc-
tory and does not allow write permission (needed to update the .. entry). (See also path_resolu-
tion(7).)

EBUSY
The rename fails because oldpath or newpath is a directory that is in use by some process (perhaps
as current working directory, or as root directory, or because it was open for reading) or is in use
by the system (for example as mount point), while the system considers this an error. (Note that
there is no requirement to return EBUSY in such cases—there is nothing wrong with doing the re-
name anyway—but it is allowed to return EBUSY if the system cannot otherwise handle such situ-
ations.)

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution

RENAME(2) Linux Programmer’s Manual RENAME(2)

EDQUOT
The user’s quota of disk blocks on the filesystem has been exhausted.

EFAULT
oldpath or newpath points outside your accessible address space.

EINVAL
The new pathname contained a path prefix of the old, or, more generally, an attempt was made to
make a directory a subdirectory of itself.

EISDIR
newpath is an existing directory, but oldpath is not a directory.

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
oldpath already has the maximum number of links to it, or it was a directory and the directory
containing newpath has the maximum number of links.

ENAMETOOLONG
oldpath or newpath was too long.

ENOENT
The link named by oldpath does not exist; or, a directory component in newpath does not exist; or,
oldpath or newpath is an empty string.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in oldpath or newpath is not, in fact, a directory. Or, oldpath is a
directory, and newpath exists but is not a directory.

ENOTEMPTY or EEXIST
newpath is a nonempty directory, that is, contains entries other than "." and "..".

EPERM or EACCES
The directory containing oldpath has the sticky bit (S_ISVTX) set and the process’s effective user
ID is neither the user ID of the file to be deleted nor that of the directory containing it, and the
process is not privileged (Linux: does not have the CAP_FOWNER capability); or newpath is an
existing file and the directory containing it has the sticky bit set and the process’s effective user ID
is neither the user ID of the file to be replaced nor that of the directory containing it, and the
process is not privileged (Linux: does not have the CAP_FOWNER capability); or the filesystem
containing pathname does not support renaming of the type requested.

EROFS
The file is on a read-only filesystem.

EXDEV
oldpath and newpath are not on the same mounted filesystem. (Linux permits a filesystem to be
mounted at multiple points, but rename() does not work across different mount points, even if the
same filesystem is mounted on both.)

The following additional errors can occur for renameat() and renameat2():

EBADF
olddirfd or newdirfd is not a valid file descriptor.

ENOTDIR
oldpath is relative and olddirfd is a file descriptor referring to a file other than a directory; or simi-
lar for newpath and newdirfd

Linux 2017-09-15 3

RENAME(2) Linux Programmer’s Manual RENAME(2)

The following additional errors can occur for renameat2():

EEXIST
flags contains RENAME_NOREPLACE and newpath already exists.

EINVAL
An invalid flag was specified in flags.

EINVAL
Both RENAME_NOREPLACE and RENAME_EXCHANGE were specified in flags.

EINVAL
Both RENAME_WHITEOUT and RENAME_EXCHANGE were specified in flags.

EINVAL
The filesystem does not support one of the flags in flags.

ENOENT
flags contains RENAME_EXCHANGE and newpath does not exist.

EPERM
RENAME_WHITEOUT was specified in flags, but the caller does not have the CAP_MKNOD
capability.

VERSIONS
renameat() was added to Linux in kernel 2.6.16; library support was added to glibc in version 2.4.

renameat2() was added to Linux in kernel 3.15.

CONFORMING TO
rename(): 4.3BSD, C89, C99, POSIX.1-2001, POSIX.1-2008.

renameat(): POSIX.1-2008.

renameat2() is Linux-specific.

NOTES
Glibc does not provide a wrapper for the renameat2() system call; call it using syscall(2).

Glibc notes
On older kernels where renameat() is unavailable, the glibc wrapper function falls back to the use of re-
name(). When oldpath and newpath are relative pathnames, glibc constructs pathnames based on the sym-
bolic links in /proc/self/fd that correspond to the olddirfd and newdirfd arguments.

BUGS
On NFS filesystems, you can not assume that if the operation failed, the file was not renamed. If the server
does the rename operation and then crashes, the retransmitted RPC which will be processed when the
server is up again causes a failure. The application is expected to deal with this. See link(2) for a similar
problem.

SEE ALSO
mv(1), chmod(2), link(2), symlink(2), unlink(2), path_resolution(7), symlink(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/syscall
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/link
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/mv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/link
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/symlink
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unlink
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/symlink
https://www.kernel.org/doc/man

	RENAME(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS
	Since glibc 2.10:

	DESCRIPTION
	DESCRIPTION
	renameat()
	renameat()

	renameat2()
	renameat2()

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	Glibc notes
	Glibc notes

	BUGS
	BUGS

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

