
SCHED_SETAFFINITY (2) Linux Programmer’s Manual SCHED_SETAFFINITY (2)

NAME
sched_setaffinity, sched_getaffinity - set and get a thread’s CPU affinity mask

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7)
*/"
#include <sched.h>

int sched_setaffinity(pid_t pid , size_t cpusetsize,
const cpu_set_t *mask);

int sched_getaffinity(pid_t pid , size_t cpusetsize,
cpu_set_t *mask);

DESCRIPTION
A thread’s CPU affinity mask determines the set of CPUs on which it is eligible to run. On a multiproces-
sor system, setting the CPU affinity mask can be used to obtain performance benefits. For example, by ded-
icating one CPU to a particular thread (i.e., setting the affinity mask of that thread to specify a single CPU,
and setting the affinity mask of all other threads to exclude that CPU), it is possible to ensure maximum ex-
ecution speed for that thread. Restricting a thread to run on a single CPU also avoids the performance cost
caused by the cache invalidation that occurs when a thread ceases to execute on one CPU and then recom-
mences execution on a different CPU.

A CPU affinity mask is represented by the cpu_set_t structure, a "CPU set", pointed to by mask. A set of
macros for manipulating CPU sets is described in CPU_SET(3).

sched_setaffinity() sets the CPU affinity mask of the thread whose ID is pid to the value specified by
mask. If pid is zero, then the calling thread is used. The argument cpusetsize is the length (in bytes) of the
data pointed to by mask. Normally this argument would be specified as sizeof(cpu_set_t).

If the thread specified by pid is not currently running on one of the CPUs specified in mask, then that
thread is migrated to one of the CPUs specified in mask.

sched_getaffinity() writes the affinity mask of the thread whose ID is pid into the cpu_set_t structure
pointed to by mask. The cpusetsize argument specifies the size (in bytes) of mask. If pid is zero, then the
mask of the calling thread is returned.

RETURN VALUE
On success, sched_setaffinity() and sched_getaffinity() return 0. On error, -1 is returned, and errno is set
appropriately.

ERRORS
EFAULT

A supplied memory address was invalid.

EINVAL
The affinity bit mask mask contains no processors that are currently physically on the system and
permitted to the thread according to any restrictions that may be imposed by cpuset cgroups or the
"cpuset" mechanism described in cpuset(7).

EINVAL
(sched_getaffinity() and, in kernels before 2.6.9, sched_setaffinity()) cpusetsize is smaller than
the size of the affinity mask used by the kernel.

EPERM
(sched_setaffinity()) The calling thread does not have appropriate privileges. The caller needs an
effective user ID equal to the real user ID or effective user ID of the thread identified by pid , or it
must possess the CAP_SYS_NICE capability in the user namespace of the thread pid .

ESRCH
The thread whose ID is pid could not be found.

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPU_SET
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/cpuset

SCHED_SETAFFINITY (2) Linux Programmer’s Manual SCHED_SETAFFINITY (2)

VERSIONS
The CPU affinity system calls were introduced in Linux kernel 2.5.8. The system call wrappers were intro-
duced in glibc 2.3. Initially, the glibc interfaces included a cpusetsize argument, typed as unsigned int. In
glibc 2.3.3, the cpusetsize argument was removed, but was then restored in glibc 2.3.4, with type size_t.

CONFORMING TO
These system calls are Linux-specific.

NOTES
After a call to sched_setaffinity(), the set of CPUs on which the thread will actually run is the intersection
of the set specified in the mask argument and the set of CPUs actually present on the system. The system
may further restrict the set of CPUs on which the thread runs if the "cpuset" mechanism described in
cpuset(7) is being used. These restrictions on the actual set of CPUs on which the thread will run are
silently imposed by the kernel.

There are various ways of determining the number of CPUs available on the system, including: inspecting
the contents of /proc/cpuinfo; using sysconf(3) to obtain the values of the _SC_NPROCESSORS_CONF
and _SC_NPROCESSORS_ONLN parameters; and inspecting the list of CPU directories under /sys/de-
vices/system/cpu/ .

sched(7) has a description of the Linux scheduling scheme.

The affinity mask is a per-thread attribute that can be adjusted independently for each of the threads in a
thread group. The value returned from a call to gettid(2) can be passed in the argument pid . Specifying
pid as 0 will set the attribute for the calling thread, and passing the value returned from a call to getpid(2)
will set the attribute for the main thread of the thread group. (If you are using the POSIX threads API, then
use pthread_setaffinity_np(3) instead of sched_setaffinity().)

The isolcpus boot option can be used to isolate one or more CPUs at boot time, so that no processes are
scheduled onto those CPUs. Following the use of this boot option, the only way to schedule processes onto
the isolated CPUs is via sched_setaffinity() or the cpuset(7) mechanism. For further information, see the
kernel source file Documentation/admin-guide/kernel-parameters.txt. As noted in that file, isolcpus is the
preferred mechanism of isolating CPUs (versus the alternative of manually setting the CPU affinity of all
processes on the system).

A child created via fork(2) inherits its parent’s CPU affinity mask. The affinity mask is preserved across an
execve(2).

C library/kernel differences
This manual page describes the glibc interface for the CPU affinity calls. The actual system call interface is
slightly different, with the mask being typed as unsigned long *, reflecting the fact that the underlying im-
plementation of CPU sets is a simple bit mask. On success, the raw sched_getaffinity() system call returns
the size (in bytes) of the cpumask_t data type that is used internally by the kernel to represent the CPU set
bit mask.

Handling systems with large CPU affinity masks
The underlying system calls (which represent CPU masks as bit masks of type unsigned long *) impose no
restriction on the size of the CPU mask. However, the cpu_set_t data type used by glibc has a fixed size of
128 bytes, meaning that the maximum CPU number that can be represented is 1023. If the kernel CPU
affinity mask is larger than 1024, then calls of the form:

sched_getaffinity(pid, sizeof(cpu_set_t), &mask);

fail with the error EINVAL, the error produced by the underlying system call for the case where the mask
size specified in cpusetsize is smaller than the size of the affinity mask used by the kernel. (Depending on
the system CPU topology, the kernel affinity mask can be substantially larger than the number of active
CPUs in the system.)

When working on systems with large kernel CPU affinity masks, one must dynamically allocate the mask
argument (see CPU_ALLOC(3)). Currently, the only way to do this is by probing for the size of the re-
quired mask using sched_getaffinity() calls with increasing mask sizes (until the call does not fail with the
error EINVAL).

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/cpuset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sysconf
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/sched
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/gettid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_setaffinity_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/cpuset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/execve
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPU_ALLOC

SCHED_SETAFFINITY (2) Linux Programmer’s Manual SCHED_SETAFFINITY (2)

Be aware that CPU_ALLOC(3) may allocate a slightly larger CPU set than requested (because CPU sets
are implemented as bit masks allocated in units of sizeof(long)). Consequently, sched_getaffinity() can set
bits beyond the requested allocation size, because the kernel sees a few additional bits. Therefore, the
caller should iterate over the bits in the returned set, counting those which are set, and stop upon reaching
the value returned by CPU_COUNT(3) (rather than iterating over the number of bits requested to be allo-
cated).

EXAMPLE
The program below creates a child process. The parent and child then each assign themselves to a specified
CPU and execute identical loops that consume some CPU time. Before terminating, the parent waits for
the child to complete. The program takes three command-line arguments: the CPU number for the parent,
the CPU number for the child, and the number of loop iterations that both processes should perform.

As the sample runs below demonstrate, the amount of real and CPU time consumed when running the pro-
gram will depend on intra-core caching effects and whether the processes are using the same CPU.

We first employ lscpu(1) to determine that this (x86) system has two cores, each with two CPUs:

$ lscpu | grep -i ’core.*:|socket’
Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1

We then time the operation of the example program for three cases: both processes running on the same
CPU; both processes running on different CPUs on the same core; and both processes running on different
CPUs on different cores.

$ time -p ./a.out 0 0 100000000
real 14.75
user 3.02
sys 11.73
$ time -p ./a.out 0 1 100000000
real 11.52
user 3.98
sys 19.06
$ time -p ./a.out 0 3 100000000
real 7.89
user 3.29
sys 12.07

Program source

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

int
main(int argc, char *argv[])
{
cpu_set_t set;
int parentCPU, childCPU;
int nloops, j;

if (argc != 4) {

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPU_ALLOC
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPU_COUNT
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/lscpu

SCHED_SETAFFINITY (2) Linux Programmer’s Manual SCHED_SETAFFINITY (2)

fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n",
argv[0]);
exit(EXIT_FAILURE);
}

parentCPU = atoi(argv[1]);
childCPU = atoi(argv[2]);
nloops = atoi(argv[3]);

CPU_ZERO(&set);

switch (fork()) {
case -1: /* Error */
errExit("fork");

case 0: /* Child */
CPU_SET(childCPU, &set);

if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");

for (j = 0; j < nloops; j++)
getppid();

exit(EXIT_SUCCESS);

default: /* Parent */
CPU_SET(parentCPU, &set);

if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");

for (j = 0; j < nloops; j++)
getppid();

wait(NULL); /* Wait for child to terminate */
exit(EXIT_SUCCESS);
}
}

SEE ALSO
lscpu(1), nproc(1), taskset(1), clone(2), getcpu(2), getpriority(2), gettid(2), nice(2),
sched_get_priority_max(2), sched_get_priority_min(2), sched_getscheduler(2), sched_setscheduler(2),
setpriority(2), CPU_SET(3), get_nprocs(3), pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7),
cpuset(7), sched(7), numactl(8)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/lscpu
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/nproc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/taskset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/clone
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getcpu
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpriority
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/gettid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/nice
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_get_priority_max
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_get_priority_min
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_getscheduler
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setscheduler
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setpriority
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/CPU_SET
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/get_nprocs
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_setaffinity_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sched_getcpu
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/cpuset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/sched
https://www.kernel.org/doc/man

	SCHED_SETAFFINITY(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	C library/kernel differences
	C library/kernel differences

	Handling systems with large CPU affinity masks
	Handling systems with large CPU affinity masks

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

