
SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

NAME
select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - synchronous I/O multiplexing

SYNOPSIS
/* According to POSIX.1-2001, POSIX.1-2008 */
#include <sys/select.h>

/* According to earlier standards */
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *utimeout);

void FD_CLR(int fd , fd_set *set);
int FD_ISSET(int fd , fd_set *set);
void FD_SET(int fd , fd_set *set);
void FD_ZERO(fd_set *set);

#include <sys/select.h>

int pselect(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, const struct timespec *ntimeout,
const sigset_t *sigmask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pselect(): _POSIX_C_SOURCE >= 200112L

DESCRIPTION
select() (or pselect()) is used to efficiently monitor multiple file descriptors, to see if any of them is, or be-
comes, "ready"; that is, to see whether I/O becomes possible, or an "exceptional condition" has occurred on
any of the file descriptors.

Its principal arguments are three "sets" of file descriptors: readfds, writefds, and exceptfds. Each set is de-
clared as type fd_set, and its contents can be manipulated with the macros FD_CLR(), FD_ISSET(),
FD_SET(), and FD_ZERO(). A newly declared set should first be cleared using FD_ZERO(). select()
modifies the contents of the sets according to the rules described below; after calling select() you can test if
a file descriptor is still present in a set with the FD_ISSET() macro. FD_ISSET() returns nonzero if a
specified file descriptor is present in a set and zero if it is not. FD_CLR() removes a file descriptor from a
set.

Arguments
readfds This set is watched to see if data is available for reading from any of its file descriptors. After se-

lect() has returned, readfds will be cleared of all file descriptors except for those that are immedi-
ately available for reading.

writefds
This set is watched to see if there is space to write data to any of its file descriptors. After select()
has returned, writefds will be cleared of all file descriptors except for those that are immediately
available for writing.

exceptfds
This set is watched for "exceptional conditions". In practice, only one such exceptional condition
is common: the availability of out-of-band (OOB) data for reading from a TCP socket. See
recv(2), send(2), and tcp(7) for more details about OOB data. (One other less common case where
select(2) indicates an exceptional condition occurs with pseudoterminals in packet mode; see
ioctl_tty(2).) After select() has returned, exceptfds will be cleared of all file descriptors except for
those for which an exceptional condition has occurred.

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/tcp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl_tty

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

nfds This is an integer one more than the maximum of any file descriptor in any of the sets. In other
words, while adding file descriptors to each of the sets, you must calculate the maximum integer
value of all of them, then increment this value by one, and then pass this as nfds.

utimeout
This is the longest time select() may wait before returning, even if nothing interesting happened.
If this value is passed as NULL, then select() blocks indefinitely waiting for a file descriptor to be-
come ready. utimeout can be set to zero seconds, which causes select() to return immediately,
with information about the readiness of file descriptors at the time of the call. The structure struct
timeval is defined as:

struct timeval {
time_t tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

ntimeout
This argument for pselect() has the same meaning as utimeout, but struct timespec has nanosec-
ond precision as follows:

struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};

sigmask
This argument holds a set of signals that the kernel should unblock (i.e., remove from the signal
mask of the calling thread), while the caller is blocked inside the pselect() call (see sigaddset(3)
and sigprocmask(2)). It may be NULL, in which case the call does not modify the signal mask on
entry and exit to the function. In this case, pselect() will then behave just like select().

Combining signal and data events
pselect() is useful if you are waiting for a signal as well as for file descriptor(s) to become ready for I/O.
Programs that receive signals normally use the signal handler only to raise a global flag. The global flag
will indicate that the event must be processed in the main loop of the program. A signal will cause the se-
lect() (or pselect()) call to return with errno set to EINTR. This behavior is essential so that signals can be
processed in the main loop of the program, otherwise select() would block indefinitely. Now, somewhere in
the main loop will be a conditional to check the global flag. So we must ask: what if a signal arrives after
the conditional, but before the select() call? The answer is that select() would block indefinitely, even
though an event is actually pending. This race condition is solved by the pselect() call. This call can be
used to set the signal mask to a set of signals that are to be received only within the pselect() call. For in-
stance, let us say that the event in question was the exit of a child process. Before the start of the main
loop, we would block SIGCHLD using sigprocmask(2). Our pselect() call would enable SIGCHLD by
using an empty signal mask. Our program would look like:

static volatile sig_atomic_t got_SIGCHLD = 0;

static void
child_sig_handler(int sig)
{
got_SIGCHLD = 1;
}

int
main(int argc, char *argv[])
{
sigset_t sigmask, empty_mask;
struct sigaction sa;
fd_set readfds, writefds, exceptfds;
int r;

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigaddset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigprocmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigprocmask

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

sigemptyset(&sigmask);
sigaddset(&sigmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {
perror("sigprocmask");
exit(EXIT_FAILURE);
}

sa.sa_flags = 0;
sa.sa_handler = child_sig_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1) {
perror("sigaction");
exit(EXIT_FAILURE);
}

sigemptyset(&empty_mask);

for (;;) { /* main loop */
/* Initialize readfds, writefds, and exceptfds
before the pselect() call. (Code omitted.) */

r = pselect(nfds, &readfds, &writefds, &exceptfds,
NULL, &empty_mask);
if (r == -1 && errno != EINTR) {
/* Handle error */
}

if (got_SIGCHLD) {
got_SIGCHLD = 0;

/* Handle signalled event here; e.g., wait() for all
terminated children. (Code omitted.) */
}

/* main body of program */
}
}

Practical
So what is the point of select()? Can’t I just read and write to my file descriptors whenever I want? The
point of select() is that it watches multiple descriptors at the same time and properly puts the process to
sleep if there is no activity. UNIX programmers often find themselves in a position where they have to han-
dle I/O from more than one file descriptor where the data flow may be intermittent. If you were to merely
create a sequence of read(2) and write(2) calls, you would find that one of your calls may block waiting for
data from/to a file descriptor, while another file descriptor is unused though ready for I/O. select() effi-
ciently copes with this situation.

Select law
Many people who try to use select() come across behavior that is difficult to understand and produces non-
portable or borderline results. For instance, the above program is carefully written not to block at any
point, even though it does not set its file descriptors to nonblocking mode. It is easy to introduce subtle er-
rors that will remove the advantage of using select(), so here is a list of essentials to watch for when using
select().

1. You should always try to use select() without a timeout. Your program should have nothing to do if
there is no data available. Code that depends on timeouts is not usually portable and is difficult to de-
bug.

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

2. The value nfds must be properly calculated for efficiency as explained above.

3. No file descriptor must be added to any set if you do not intend to check its result after the select()
call, and respond appropriately. See next rule.

4. After select() returns, all file descriptors in all sets should be checked to see if they are ready.

5. The functions read(2), recv(2), write(2), and send(2) do not necessarily read/write the full amount of
data that you have requested. If they do read/write the full amount, it’s because you have a low traffic
load and a fast stream. This is not always going to be the case. You should cope with the case of your
functions managing to send or receive only a single byte.

6. Never read/write only in single bytes at a time unless you are really sure that you have a small amount
of data to process. It is extremely inefficient not to read/write as much data as you can buffer each
time. The buffers in the example below are 1024 bytes although they could easily be made larger.

7. Calls to read(2), recv(2), write(2), send(2), and select() can fail with the error EINTR, and calls to
read(2), recv(2) write(2), and send(2) can fail with errno set to EAGAIN (EWOULDBLOCK).
These results must be properly managed (not done properly above). If your program is not going to
receive any signals, then it is unlikely you will get EINTR. If your program does not set nonblocking
I/O, you will not get EAGAIN.

8. Never call read(2), recv(2), write(2), or send(2) with a buffer length of zero.

9. If the functions read(2), recv(2), write(2), and send(2) fail with errors other than those listed in 7., or
one of the input functions returns 0, indicating end of file, then you should not pass that file descriptor
to select() again. In the example below, I close the file descriptor immediately, and then set it to -1 to
prevent it being included in a set.

10. The timeout value must be initialized with each new call to select(), since some operating systems
modify the structure. pselect() however does not modify its timeout structure.

11. Since select() modifies its file descriptor sets, if the call is being used in a loop, then the sets must be
reinitialized before each call.

Usleep emulation
On systems that do not have a usleep(3) function, you can call select() with a finite timeout and no file de-
scriptors as follows:

struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 200000; /* 0.2 seconds */
select(0, NULL, NULL, NULL, &tv);

This is guaranteed to work only on UNIX systems, however.

RETURN VALUE
On success, select() returns the total number of file descriptors still present in the file descriptor sets.

If select() timed out, then the return value will be zero. The file descriptors set should be all empty (but
may not be on some systems).

A return value of -1 indicates an error, with errno being set appropriately. In the case of an error, the con-
tents of the returned sets and the struct timeout contents are undefined and should not be used. pselect()
however never modifies ntimeout.

NOTES
Generally speaking, all operating systems that support sockets also support select(). select() can be used to
solve many problems in a portable and efficient way that naive programmers try to solve in a more compli-
cated manner using threads, forking, IPCs, signals, memory sharing, and so on.

The poll(2) system call has the same functionality as select(), and is somewhat more efficient when moni-
toring sparse file descriptor sets. It is nowadays widely available, but historically was less portable than se-
lect().

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/usleep
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

The Linux-specific epoll(7) API provides an interface that is more efficient than select(2) and poll(2) when
monitoring large numbers of file descriptors.

EXAMPLE
Here is an example that better demonstrates the true utility of select(). The listing below is a TCP forward-
ing program that forwards from one TCP port to another.

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <string.h>
#include <signal.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>

static int forward_port;

#undef max
#define max(x,y) ((x) > (y) ? (x) : (y))

static int
listen_socket(int listen_port)
{
struct sockaddr_in addr;
int lfd;
int yes;

lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1) {
perror("socket");
return -1;
}

yes = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,
&yes, sizeof(yes)) == -1) {
perror("setsockopt");
close(lfd);
return -1;
}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(listen_port);
addr.sin_family = AF_INET;
if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("bind");
close(lfd);
return -1;
}

printf("accepting connections on port %d\n", listen_port);
listen(lfd, 10);
return lfd;
}

static int

Linux 2017-09-15 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

connect_socket(int connect_port, char *address)
{
struct sockaddr_in addr;
int cfd;

cfd = socket(AF_INET, SOCK_STREAM, 0);
if (cfd == -1) {
perror("socket");
return -1;
}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(connect_port);
addr.sin_family = AF_INET;

if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {
perror("bad IP address format");
close(cfd);
return -1;
}

if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect()");
shutdown(cfd, SHUT_RDWR);
close(cfd);
return -1;
}
return cfd;
}

#define SHUT_FD1 do { \
if (fd1 >= 0) { \
shutdown(fd1, SHUT_RDWR); \
close(fd1); \
fd1 = -1; \
} \
} while (0)

#define SHUT_FD2 do { \
if (fd2 >= 0) { \
shutdown(fd2, SHUT_RDWR); \
close(fd2); \
fd2 = -1; \
} \
} while (0)

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{
int h;
int fd1 = -1, fd2 = -1;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
int buf1_avail = 0, buf1_written = 0;
int buf2_avail = 0, buf2_written = 0;

if (argc != 4) {
fprintf(stderr, "Usage\n\tfwd <listen-port> "

Linux 2017-09-15 6

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

"<forward-to-port> <forward-to-ip-address>\n");
exit(EXIT_FAILURE);
}

signal(SIGPIPE, SIG_IGN);

forward_port = atoi(argv[2]);

h = listen_socket(atoi(argv[1]));
if (h == -1)
exit(EXIT_FAILURE);

for (;;) {
int ready, nfds = 0;
ssize_t nbytes;
fd_set readfds, writefds, exceptfds;

FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(h, &readfds);
nfds = max(nfds, h);

if (fd1 > 0 && buf1_avail < BUF_SIZE)
FD_SET(fd1, &readfds);
/* Note: nfds is updated below, when fd1 is added to
exceptfds. */
if (fd2 > 0 && buf2_avail < BUF_SIZE)
FD_SET(fd2, &readfds);

if (fd1 > 0 && buf2_avail - buf2_written > 0)
FD_SET(fd1, &writefds);
if (fd2 > 0 && buf1_avail - buf1_written > 0)
FD_SET(fd2, &writefds);

if (fd1 > 0) {
FD_SET(fd1, &exceptfds);
nfds = max(nfds, fd1);
}
if (fd2 > 0) {
FD_SET(fd2, &exceptfds);
nfds = max(nfds, fd2);
}

ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);

if (ready == -1 && errno == EINTR)
continue;

if (ready == -1) {
perror("select()");
exit(EXIT_FAILURE);
}

if (FD_ISSET(h, &readfds)) {
socklen_t addrlen;
struct sockaddr_in client_addr;
int fd;

addrlen = sizeof(client_addr);
memset(&client_addr, 0, addrlen);

Linux 2017-09-15 7

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);
if (fd == -1) {
perror("accept()");
} else {
SHUT_FD1;
SHUT_FD2;
buf1_avail = buf1_written = 0;
buf2_avail = buf2_written = 0;
fd1 = fd;
fd2 = connect_socket(forward_port, argv[3]);
if (fd2 == -1)
SHUT_FD1;
else
printf("connect from %s\n",
inet_ntoa(client_addr.sin_addr));

/* Skip any events on the old, closed file descriptors. */
continue;
}
}

/* NB: read OOB data before normal reads */

if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {
char c;

nbytes = recv(fd1, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD1;
else
send(fd2, &c, 1, MSG_OOB);
}
if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {
char c;

nbytes = recv(fd2, &c, 1, MSG_OOB);
if (nbytes < 1)
SHUT_FD2;
else
send(fd1, &c, 1, MSG_OOB);
}
if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {
nbytes = read(fd1, buf1 + buf1_avail,
BUF_SIZE - buf1_avail);
if (nbytes < 1)
SHUT_FD1;
else
buf1_avail += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {
nbytes = read(fd2, buf2 + buf2_avail,
BUF_SIZE - buf2_avail);
if (nbytes < 1)
SHUT_FD2;
else
buf2_avail += nbytes;
}

Linux 2017-09-15 8

SELECT_TUT (2) Linux Programmer’s Manual SELECT_TUT (2)

if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {
nbytes = write(fd1, buf2 + buf2_written,
buf2_avail - buf2_written);
if (nbytes < 1)
SHUT_FD1;
else
buf2_written += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {
nbytes = write(fd2, buf1 + buf1_written,
buf1_avail - buf1_written);
if (nbytes < 1)
SHUT_FD2;
else
buf1_written += nbytes;
}

/* Check if write data has caught read data */

if (buf1_written == buf1_avail)
buf1_written = buf1_avail = 0;
if (buf2_written == buf2_avail)
buf2_written = buf2_avail = 0;

/* One side has closed the connection, keep
writing to the other side until empty */

if (fd1 < 0 && buf1_avail - buf1_written == 0)
SHUT_FD2;
if (fd2 < 0 && buf2_avail - buf2_written == 0)
SHUT_FD1;
}
exit(EXIT_SUCCESS);
}

The above program properly forwards most kinds of TCP connections including OOB signal data transmit-
ted by telnet servers. It handles the tricky problem of having data flow in both directions simultaneously.
You might think it more efficient to use a fork(2) call and devote a thread to each stream. This becomes
more tricky than you might suspect. Another idea is to set nonblocking I/O using fcntl(2). This also has its
problems because you end up using inefficient timeouts.

The program does not handle more than one simultaneous connection at a time, although it could easily be
extended to do this with a linked list of buffers—one for each connection. At the moment, new connections
cause the current connection to be dropped.

SEE ALSO
accept(2), connect(2), ioctl(2), poll(2), read(2), recv(2), select(2), send(2), sigprocmask(2), write(2),
sigaddset(3), sigdelset(3), sigemptyset(3), sigfillset(3), sigismember(3), epoll(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigprocmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigaddset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigdelset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigemptyset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigfillset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sigismember
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/epoll
https://www.kernel.org/doc/man

	SELECT_TUT(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Arguments
	Arguments

	Combining signal and data events
	Combining signal and data events

	Practical
	Practical

	Select law
	Select law
	1.

	Usleep emulation
	Usleep emulation

	RETURN VALUE
	RETURN VALUE

	NOTES
	NOTES

	EXAMPLE
	EXAMPLE

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

