
UMOUNT (2) Linux Programmer’s Manual UMOUNT (2)

NAME
umount, umount2 - unmount filesystem

SYNOPSIS
#include <sys/mount.h>

int umount(const char *target);

int umount2(const char *target, int flags);

DESCRIPTION
umount() and umount2() remove the attachment of the (topmost) filesystem mounted on target.

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to unmount filesystems.

Linux 2.1.116 added the umount2() system call, which, like umount(), unmounts a target, but allows addi-
tional flags controlling the behavior of the operation:

MNT_FORCE (since Linux 2.1.116)
Ask the filesystem to abort pending requests before attempting the unmount. This may allow the
unmount to complete without waiting for an inaccessible server, but could cause data loss. If, after
aborting requests, some processes still have active references to the filesystem, the unmount will
still fail. As at Linux 4.12, MNT_FORCE is supported only on the following filesystems: 9p
(since Linux 2.6.16), ceph (since Linux 2.6.34), cifs (since Linux 2.6.12), fuse (since Linux
2.6.16), lustre (since Linux 3.11), and NFS (since Linux 2.1.116).

MNT_DETACH (since Linux 2.4.11)
Perform a lazy unmount: make the mount point unavailable for new accesses, immediately discon-
nect the filesystem and all filesystems mounted below it from each other and from the mount table,
and actually perform the unmount when the mount point ceases to be busy.

MNT_EXPIRE (since Linux 2.6.8)
Mark the mount point as expired. If a mount point is not currently in use, then an initial call to
umount2() with this flag fails with the error EAGAIN, but marks the mount point as expired. The
mount point remains expired as long as it isn’t accessed by any process. A second umount2() call
specifying MNT_EXPIRE unmounts an expired mount point. This flag cannot be specified with
either MNT_FORCE or MNT_DETACH.

UMOUNT_NOFOLLOW (since Linux 2.6.34)
Don’t dereference target if it is a symbolic link. This flag allows security problems to be avoided
in set-user-ID-root programs that allow unprivileged users to unmount filesystems.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS
The error values given below result from filesystem type independent errors. Each filesystem type may
have its own special errors and its own special behavior. See the Linux kernel source code for details.

EAGAIN
A call to umount2() specifying MNT_EXPIRE successfully marked an unbusy filesystem as ex-
pired.

EBUSY
target could not be unmounted because it is busy.

EFAULT
target points outside the user address space.

EINVAL
target is not a mount point.

EINVAL
umount2() was called with MNT_EXPIRE and either MNT_DETACH or MNT_FORCE.

Linux 2017-09-15 1

UMOUNT (2) Linux Programmer’s Manual UMOUNT (2)

EINVAL (since Linux 2.6.34)
umount2() was called with an invalid flag value in flags.

ENAMETOOLONG
A pathname was longer than MAXPATHLEN.

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
The kernel could not allocate a free page to copy filenames or data into.

EPERM
The caller does not have the required privileges.

VERSIONS
MNT_DETACH and MNT_EXPIRE are available in glibc since version 2.11.

CONFORMING TO
These functions are Linux-specific and should not be used in programs intended to be portable.

NOTES
umount() and shared mount points

Shared mount points cause any mount activity on a mount point, including umount() operations, to be for-
warded to every shared mount point in the peer group and every slave mount of that peer group. This
means that umount() of any peer in a set of shared mounts will cause all of its peers to be unmounted and
all of their slaves to be unmounted as well.

This propagation of unmount activity can be particularly surprising on systems where every mount point is
shared by default. On such systems, recursively bind mounting the root directory of the filesystem onto a
subdirectory and then later unmounting that subdirectory with MNT_DETACH will cause every mount in
the mount namespace to be lazily unmounted.

To ensure umount() does not propagate in this fashion, the mount point may be remounted using a mount()
call with a mount_flags argument that includes both MS_REC and MS_PRIVATE prior to umount() be-
ing called.

Historical details
The original umount() function was called as umount(device) and would return ENOTBLK when called
with something other than a block device. In Linux 0.98p4, a call umount(dir) was added, in order to sup-
port anonymous devices. In Linux 2.3.99-pre7, the call umount(device) was removed, leaving only
umount(dir) (since now devices can be mounted in more than one place, so specifying the device does not
suffice).

SEE ALSO
mount(2), mount_namespaces(7), path_resolution(7), mount(8), umount(8)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/mount_namespaces
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/path_resolution
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/mount
http://chuzzlewit.co.uk/WebManPDF.pl/man:/8/umount
https://www.kernel.org/doc/man

	UMOUNT(2)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	umount() and shared mount points
	umount() and shared mount points

	Historical details
	Historical details

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

