
BACKTRACE(3) Linux Programmer’s Manual BACKTRACE(3)

NAME
backtrace, backtrace_symbols, backtrace_symbols_fd - support for application self-debugging

SYNOPSIS
#include <execinfo.h>

int backtrace(void **buffer, int size);

char **backtrace_symbols(void *const *buffer, int size);

void backtrace_symbols_fd(void *const *buffer, int size, int fd);

DESCRIPTION
backtrace() returns a backtrace for the calling program, in the array pointed to by buffer. A backtrace is
the series of currently active function calls for the program. Each item in the array pointed to by buffer is
of type void *, and is the return address from the corresponding stack frame. The size argument specifies
the maximum number of addresses that can be stored in buffer. If the backtrace is larger than size, then the
addresses corresponding to the size most recent function calls are returned; to obtain the complete back-
trace, make sure that buffer and size are large enough.

Given the set of addresses returned by backtrace() in buffer, backtrace_symbols() translates the addresses
into an array of strings that describe the addresses symbolically. The size argument specifies the number of
addresses in buffer. The symbolic representation of each address consists of the function name (if this can
be determined), a hexadecimal offset into the function, and the actual return address (in hexadecimal). The
address of the array of string pointers is returned as the function result of backtrace_symbols(). This array
is malloc(3)ed by backtrace_symbols(), and must be freed by the caller. (The strings pointed to by the ar-
ray of pointers need not and should not be freed.)

backtrace_symbols_fd() takes the same buffer and size arguments as backtrace_symbols(), but instead of
returning an array of strings to the caller, it writes the strings, one per line, to the file descriptor fd . back-
trace_symbols_fd() does not call malloc(3), and so can be employed in situations where the latter function
might fail, but see NOTES.

RETURN VALUE
backtrace() returns the number of addresses returned in buffer, which is not greater than size. If the return
value is less than size, then the full backtrace was stored; if it is equal to size, then it may have been trun-
cated, in which case the addresses of the oldest stack frames are not returned.

On success, backtrace_symbols() returns a pointer to the array malloc(3)ed by the call; on error, NULL is
returned.

VERSIONS
backtrace(), backtrace_symbols(), and backtrace_symbols_fd() are provided in glibc since version 2.1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safebacktrace(),

backtrace_symbols(),
backtrace_symbols_fd()

CONFORMING TO
These functions are GNU extensions.

NOTES
These functions make some assumptions about how a function’s return address is stored on the stack. Note
the following:

* Omission of the frame pointers (as implied by any of gcc(1)’s nonzero optimization levels) may cause
these assumptions to be violated.

GNU 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes

BACKTRACE(3) Linux Programmer’s Manual BACKTRACE(3)

* Inlined functions do not have stack frames.

* Tail-call optimization causes one stack frame to replace another.

* backtrace() and backtrace_symbols_fd() don’t call malloc() explicitly, but they are part of libgcc,
which gets loaded dynamically when first used. Dynamic loading usually triggers a call to malloc(3).
If you need certain calls to these two functions to not allocate memory (in signal handlers, for example),
you need to make sure libgcc is loaded beforehand.

The symbol names may be unavailable without the use of special linker options. For systems using the
GNU linker, it is necessary to use the -rdynamic linker option. Note that names of "static" functions are
not exposed, and won’t be available in the backtrace.

EXAMPLE
The program below demonstrates the use of backtrace() and backtrace_symbols(). The following shell
session shows what we might see when running the program:

$ cc -rdynamic prog.c -o prog
$./prog 3
backtrace() returned 8 addresses
./prog(myfunc3+0x5c) [0x80487f0]
./prog [0x8048871]
./prog(myfunc+0x21) [0x8048894]
./prog(myfunc+0x1a) [0x804888d]
./prog(myfunc+0x1a) [0x804888d]
./prog(main+0x65) [0x80488fb]
/lib/libc.so.6(__libc_start_main+0xdc) [0xb7e38f9c]
./prog [0x8048711]

Program source

#include <execinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BT_BUF_SIZE 100

void
myfunc3(void)
{
int j, nptrs;
void *buffer[BT_BUF_SIZE];
char **strings;

nptrs = backtrace(buffer, BT_BUF_SIZE);
printf("backtrace() returned %d addresses\n", nptrs);

/* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)
would produce similar output to the following: */

strings = backtrace_symbols(buffer, nptrs);
if (strings == NULL) {
perror("backtrace_symbols");
exit(EXIT_FAILURE);
}

for (j = 0; j < nptrs; j++)
printf("%s\n", strings[j]);

free(strings);
}

GNU 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc

BACKTRACE(3) Linux Programmer’s Manual BACKTRACE(3)

static void /* "static" means don't export the symbol... */
myfunc2(void)
{
myfunc3();
}

void
myfunc(int ncalls)
{
if (ncalls > 1)
myfunc(ncalls - 1);
else
myfunc2();
}

int
main(int argc, char *argv[])
{
if (argc != 2) {
fprintf(stderr, "%s num-calls\n", argv[0]);
exit(EXIT_FAILURE);
}

myfunc(atoi(argv[1]));
exit(EXIT_SUCCESS);
}

SEE ALSO
addr2line(1), gcc(1), gdb(1), ld(1), dlopen(3), malloc(3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

GNU 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/addr2line
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/ld
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/dlopen
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
https://www.kernel.org/doc/man

	BACKTRACE(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	VERSIONS
	VERSIONS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

