
BZERO(3) Linux Programmer’s Manual BZERO(3)

NAME
bzero, explicit_bzero - zero a byte string

SYNOPSIS
#include <strings.h>

void bzero(void *s, size_t n);

#include <string.h>

void explicit_bzero(void *s, size_t n);

DESCRIPTION
The bzero() function erases the data in the n bytes of the memory starting at the location pointed to by s,
by writing zeros (bytes containing '\0') to that area.

The explicit_bzero() function performs the same task as bzero(). It differs from bzero() in that it guaran-
tees that compiler optimizations will not remove the erase operation if the compiler deduces that the opera-
tion is "unnecessary".

RETURN VALUE
None.

VERSIONS
explicit_bzero() first appeared in glibc 2.25.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safebzero(),

explicit_bzero()

CONFORMING TO
The bzero() function is deprecated (marked as LEGACY in POSIX.1-2001); use memset(3) in new pro-
grams. POSIX.1-2008 removes the specification of bzero(). The bzero() function first appeared in
4.3BSD.

The explicit_bzero() function is a nonstandard extension that is also present on some of the BSDs. Some
other implementations have a similar function, such as memset_explicit() or memset_s().

NOTES
The explicit_bzero() function addresses a problem that security-conscious applications may run into when
using bzero(): if the compiler can deduce that the location to zeroed will never again be touched by a cor-
rect program, then it may remove the bzero() call altogether. This is a problem if the intent of the bzero()
call was to erase sensitive data (e.g., passwords) to prevent the possibility that the data was leaked by an in-
correct or compromised program. Calls to explicit_bzero() are never optimized away by the compiler.

The explicit_bzero() function does not solve all problems associated with erasing sensitive data:

1. The explicit_bzero() function does not guarantee that sensitive data is completely erased from memory.
(The same is true of bzero().) For example, there may be copies of the sensitive data in a register and in
"scratch" stack areas. The explicit_bzero() function is not aware of these copies, and can’t erase them.

2. In some circumstances, explicit_bzero() can decrease security. If the compiler determined that the
variable containing the sensitive data could be optimized to be stored in a register (because it is small
enough to fit in a register, and no operation other than the explicit_bzero() call would need to take the
address of the variable), then the explicit_bzero() call will force the data to be copied from the register
to a location in RAM that is then immediately erased (while the copy in the register remains unaf-
fected). The problem here is that data in RAM is more likely to be exposed by a bug than data in a reg-
ister, and thus the explicit_bzero() call creates a brief time window where the sensitive data is more
vulnerable than it would otherwise have been if no attempt had been made to erase the data.

Note that declaring the sensitive variable with the volatile qualifier does not eliminate the above problems.
Indeed, it will make them worse, since, for example, it may force a variable that would otherwise have been

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/memset

BZERO(3) Linux Programmer’s Manual BZERO(3)

optimized into a register to instead be maintained in (more vulnerable) RAM for its entire lifetime.

Notwithstanding the above details, for security-conscious applications, using explicit_bzero() is generally
preferable to not using it. The developers of explicit_bzero() anticipate that future compilers will recog-
nize calls to explicit_bzero() and take steps to ensure that all copies of the sensitive data are erased, includ-
ing copies in registers or in "scratch" stack areas.

SEE ALSO
bstring(3), memset(3), swab(3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/bstring
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/memset
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/swab
https://www.kernel.org/doc/man

	BZERO(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	VERSIONS
	VERSIONS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

