
CRYPT (3) Linux Programmer’s Manual CRYPT (3)

NAME
crypt, crypt_r - password and data encryption

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7)
*/"
#include <unistd.h>

char *crypt(const char *key, const char *salt);

#define _GNU_SOURCE /* See feature_test_macros(7)
*/"
#include <crypt.h>

char *crypt_r(const char *key, const char *salt,
struct crypt_data *data);

Link with -lcrypt.

DESCRIPTION
crypt() is the password encryption function. It is based on the Data Encryption Standard algorithm with
variations intended (among other things) to discourage use of hardware implementations of a key search.

key is a user’s typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used to perturb the algo-
rithm in one of 4096 different ways.

By taking the lowest 7 bits of each of the first eight characters of the key, a 56-bit key is obtained. This
56-bit key is used to encrypt repeatedly a constant string (usually a string consisting of all zeros). The re-
turned value points to the encrypted password, a series of 13 printable ASCII characters (the first two char-
acters represent the salt itself). The return value points to static data whose content is overwritten by each
call.

Warning: the key space consists of 256 equal 7.2e16 possible values. Exhaustive searches of this key space
are possible using massively parallel computers. Software, such as crack(1), is available which will search
the portion of this key space that is generally used by humans for passwords. Hence, password selection
should, at minimum, avoid common words and names. The use of a passwd(1) program that checks for
crackable passwords during the selection process is recommended.

The DES algorithm itself has a few quirks which make the use of the crypt() interface a very poor choice
for anything other than password authentication. If you are planning on using the crypt() interface for a
cryptography project, don’t do it: get a good book on encryption and one of the widely available DES li-
braries.

crypt_r() is a reentrant version of crypt(). The structure pointed to by data is used to store result data and
bookkeeping information. Other than allocating it, the only thing that the caller should do with this struc-
ture is to set data->initialized to zero before the first call to crypt_r().

RETURN VALUE
On success, a pointer to the encrypted password is returned. On error, NULL is returned.

ERRORS
EINVAL

salt has the wrong format.

ENOSYS
The crypt() function was not implemented, probably because of U.S.A. export restrictions.

EPERM
/proc/sys/crypto/fips_enabled has a nonzero value, and an attempt was made to use a weak en-
cryption type, such as DES.

2018-04-30 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/passwd

CRYPT (3) Linux Programmer’s Manual CRYPT (3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Unsafe race:cryptcrypt()
Thread safety MT-Safecrypt_r()

CONFORMING TO
crypt(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD. crypt_r() is a GNU extension.

NOTES
Availability in glibc

The crypt(), encrypt(3), and setkey(3) functions are part of the POSIX.1-2008 XSI Options Group for En-
cryption and are optional. If the interfaces are not available, then the symbolic constant
_XOPEN_CRYPT is either not defined, or it is defined to -1 and availability can be checked at run time
with sysconf(3). This may be the case if the downstream distribution has switched from glibc crypt to libx-
crypt. When recompiling applications in such distributions, the programmer must detect if
_XOPEN_CRYPT is not available and include <crypt.h> for the function prototypes; otherwise libxcrypt
is an ABI-compatible drop-in replacement.

Features in glibc
The glibc version of this function supports additional encryption algorithms.

If salt is a character string starting with the characters "id" followed by a string optionally terminated by
"$", then the result has the form:

idsalt$encrypted

id identifies the encryption method used instead of DES and this then determines how the rest of the pass-
word string is interpreted. The following values of id are supported:

ID | Method

1 | MD5
2a | Blowfish (not in mainline glibc; added in some
| Linux distributions)
5 | SHA-256 (since glibc 2.7)
6 | SHA-512 (since glibc 2.7)

Thus, 5salt$encrypted and 6salt$encrypted contain the password encrypted with, respectively, func-
tions based on SHA-256 and SHA-512.

"salt" stands for the up to 16 characters following "id" in the salt. The "encrypted" part of the password
string is the actual computed password. The size of this string is fixed:
MD5 | 22 characters
SHA-256 | 43 characters
SHA-512 | 86 characters

The characters in "salt" and "encrypted" are drawn from the set [a-zA-Z0-9./]. In the MD5 and SHA im-
plementations the entire key is significant (instead of only the first 8 bytes in DES).

Since glibc 2.7, the SHA-256 and SHA-512 implementations support a user-supplied number of hashing
rounds, defaulting to 5000. If the "id" characters in the salt are followed by "rounds=xxx$", where xxx is
an integer, then the result has the form

idrounds=yyy$salt$encrypted

where yyy is the number of hashing rounds actually used. The number of rounds actually used is 1000 if
xxx is less than 1000, 999999999 if xxx is greater than 999999999, and is equal to xxx otherwise.

SEE ALSO
login(1), passwd(1), encrypt(3), getpass(3), passwd(5)

2018-04-30 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/encrypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/setkey
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/sysconf
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/login
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/passwd
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/encrypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/getpass
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/passwd

CRYPT (3) Linux Programmer’s Manual CRYPT (3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

2018-04-30 3

https://www.kernel.org/doc/man

	CRYPT(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	Availability in glibc
	Availability in glibc

	Features in glibc
	Features in glibc

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

