NAME

drem, dremf, dreml, remainder, remainderf, remainderl - floating-point remainder function

SYNOPSIS

#include <math.h>

/* The C99 versions */
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

```
/* Obsolete synonyms */
double drem(double x, double y);
float dremf(float x, float y);
long double dreml(long double x, long double y);
```

```
Link with -lm.
```

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

remainder():

_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 500 || /* Since glibc 2.19: */ _DEFAULT_SOURCE || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

remainderf(), remainderl():

_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || /* Since glibc 2.19: */ _DE-FAULT_SOURCE || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

drem(), dremf(), dreml():

/* Since glibc 2.19: */_DEFAULT_SOURCE || /* Glibc versions <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION

These functions compute the remainder of dividing x by y. The return value is $x-n^*y$, where n is the value x/y, rounded to the nearest integer. If the absolute value of $x-n^*y$ is 0.5, n is chosen to be even.

These functions are unaffected by the current rounding mode (see fenv(3)).

The **drem**() function does precisely the same thing.

RETURN VALUE

On success, these functions return the floating-point remainder, $x-n^*y$. If the return value is 0, it has the sign of x.

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS

See math_error(7) for information on how to determine whether an error has occurred when calling these functions.

The following errors can occur:

Domain error: *x* is an infinity and *y* is not a NaN

errno is set to **EDOM** (but see BUGS). An invalid floating-point exception (**FE_INVALID**) is raised.

These functions do not set errno for this case.

Domain error: *y* is zero

errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is raised.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

Interface	Attribute	Value
drem(), dremf(), dreml(),	Thread safety	MT-Safe
remainder(), remainderf(),		
remainderl()		

CONFORMING TO

The functions **remainder**(), **remainderf**(), and **remainderl**() are specified in C99, POSIX.1-2001, and POSIX.1-2008.

The function **drem**() is from 4.3BSD. The *float* and *long double* variants **dremf**() and **dreml**() exist on some systems, such as Tru64 and glibc2. Avoid the use of these functions in favor of **remainder**() etc.

BUGS

Before glibc 2.15, the call

remainder(nan(""), 0);

returned a NaN, as expected, but wrongly caused a domain error. Since glibc 2.15, a silent NaN (i.e., no domain error) is returned.

Before glibc 2.15, *errno* was not set to **EDOM** for the domain error that occurs when x is an infinity and y is not a NaN. *errno was not set*

EXAMPLE

The call "remainder(29.0, 3.0)" returns -1.

SEE ALSO

div(3), fmod(3), remquo(3)

COLOPHON

This page is part of release 4.16 of the Linux *man-pages* project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.