
FENV (3) Linux Programmer’s Manual FENV (3)

NAME
feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetenv, fegetround, feholdex-
cept, fesetround, fesetenv, feupdateenv, feenableexcept, fedisableexcept, fegetexcept - floating-point round-
ing and exception handling

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t * flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexceptflag(const fexcept_t * flagp, int excepts);
int fetestexcept(int excepts);

int fegetround(void);
int fesetround(int rounding_mode);

int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

Link with -lm.

DESCRIPTION
These eleven functions were defined in C99, and describe the handling of floating-point rounding and ex-
ceptions (overflow, zero-divide, etc.).

Exceptions
The divide-by-zero exception occurs when an operation on finite numbers produces infinity as exact answer.

The overflow exception occurs when a result has to be represented as a floating-point number, but has
(much) larger absolute value than the largest (finite) floating-point number that is representable.

The underflow exception occurs when a result has to be represented as a floating-point number, but has
smaller absolute value than the smallest positive normalized floating-point number (and would lose much
accuracy when represented as a denormalized number).

The inexact exception occurs when the rounded result of an operation is not equal to the infinite precision
result. It may occur whenever overflow or underflow occurs.

The invalid exception occurs when there is no well-defined result for an operation, as for 0/0 or infinity -
infinity or sqrt(-1).

Exception handling
Exceptions are represented in two ways: as a single bit (exception present/absent), and these bits corre-
spond in some implementation-defined way with bit positions in an integer, and also as an opaque structure
that may contain more information about the exception (perhaps the code address where it occurred).

Each of the macros FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UN-
DERFLOW is defined when the implementation supports handling of the corresponding exception, and if
so then defines the corresponding bit(s), so that one can call exception handling functions, for example, us-
ing the integer argument FE_OVERFLOW|FE_UNDERFLOW. Other exceptions may be supported.
The macro FE_ALL_EXCEPT is the bitwise OR of all bits corresponding to supported exceptions.

The feclearexcept() function clears the supported exceptions represented by the bits in its argument.

The fegetexceptflag() function stores a representation of the state of the exception flags represented by the
argument excepts in the opaque object *flagp.

The feraiseexcept() function raises the supported exceptions represented by the bits in excepts.

The fesetexceptflag() function sets the complete status for the exceptions represented by excepts to the
value *flagp. This value must have been obtained by an earlier call of fegetexceptflag() with a last argu-
ment that contained all bits in excepts.

Linux 2017-09-15 1

FENV (3) Linux Programmer’s Manual FENV (3)

The fetestexcept() function returns a word in which the bits are set that were set in the argument excepts
and for which the corresponding exception is currently set.

Rounding mode
The rounding mode determines how the result of floating-point operations is treated when the result cannot
be exactly represented in the significand. Various rounding modes may be provided: round to nearest (the
default), round up (toward positive infinity), round down (toward negative infinity), and round toward zero.

Each of the macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, and FE_TOWARDZERO is
defined when the implementation supports getting and setting the corresponding rounding direction.

The fegetround() function returns the macro corresponding to the current rounding mode.

The fesetround() function sets the rounding mode as specified by its argument and returns zero when it was
successful.

C99 and POSIX.1-2008 specify an identifier, FLT_ROUNDS, defined in <float.h>, which indicates the
implementation-defined rounding behavior for floating-point addition. This identifier has one of the follow-
ing values:

-1 The rounding mode is not determinable.

0 Rounding is toward 0.

1 Rounding is toward nearest number.

2 Rounding is toward positive infinity.

3 Rounding is toward negative infinity.

Other values represent machine-dependent, nonstandard rounding modes.

The value of FLT_ROUNDS should reflect the current rounding mode as set by fesetround() (but see
BUGS).

Floating-point environment
The entire floating-point environment, including control modes and status flags, can be handled as one
opaque object, of type fenv_t. The default environment is denoted by FE_DFL_ENV (of type const
fenv_t *). This is the environment setup at program start and it is defined by ISO C to have round to near-
est, all exceptions cleared and a nonstop (continue on exceptions) mode.

The fegetenv() function saves the current floating-point environment in the object *envp.

The feholdexcept() function does the same, then clears all exception flags, and sets a nonstop (continue on
exceptions) mode, if available. It returns zero when successful.

The fesetenv() function restores the floating-point environment from the object *envp. This object must be
known to be valid, for example, the result of a call to fegetenv() or feholdexcept() or equal to
FE_DFL_ENV. This call does not raise exceptions.

The feupdateenv() function installs the floating-point environment represented by the object *envp, except
that currently raised exceptions are not cleared. After calling this function, the raised exceptions will be a
bitwise OR of those previously set with those in *envp. As before, the object *envp must be known to be
valid.

RETURN VALUE
These functions return zero on success and nonzero if an error occurred.

VERSIONS
These functions first appeared in glibc in version 2.1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes

FENV (3) Linux Programmer’s Manual FENV (3)

Interface Attribute Value
Thread safetyfeclearexcept(), fegetexceptflag(),

feraiseexcept(), fesetexceptflag(),
fetestexcept(), fegetround(), fesetround(),
fegetenv(), feholdexcept(), fesetenv(),
feupdateenv(), feenableexcept(),
fedisableexcept(), fegetexcept()

MT-Safe

CONFORMING TO
IEC 60559 (IEC 559:1989), ANSI/IEEE 854, C99, POSIX.1-2001.

NOTES
Glibc notes

If possible, the GNU C Library defines a macro FE_NOMASK_ENV which represents an environment
where every exception raised causes a trap to occur. You can test for this macro using #ifdef. It is defined
only if _GNU_SOURCE is defined. The C99 standard does not define a way to set individual bits in the
floating-point mask, for example, to trap on specific flags. Since version 2.2, glibc supports the functions
feenableexcept() and fedisableexcept() to set individual floating-point traps, and fegetexcept() to query
the state.

#define _GNU_SOURCE /* See feature_test_macros(7)
*/"
#include <fenv.h>

int feenableexcept(int excepts);
int fedisableexcept(int excepts);
int fegetexcept(void);

The feenableexcept() and fedisableexcept() functions enable (disable) traps for each of the exceptions rep-
resented by excepts and return the previous set of enabled exceptions when successful, and -1 otherwise.
The fegetexcept() function returns the set of all currently enabled exceptions.

BUGS
C99 specifies that the value of FLT_ROUNDS should reflect changes to the current rounding mode, as set
by fesetround(). Currently, this does not occur: FLT_ROUNDS always has the value 1.

SEE ALSO
math_error(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/math_error
https://www.kernel.org/doc/man

	FENV(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Exceptions
	Exceptions

	Exception handling
	Exception handling

	Rounding mode
	Rounding mode

	Floating-point environment
	Floating-point environment

	RETURN VALUE
	RETURN VALUE

	VERSIONS
	VERSIONS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	Glibc notes
	Glibc notes

	BUGS
	BUGS

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

