
FMEMOPEN (3) Linux Programmer’s Manual FMEMOPEN (3)

NAME
fmemopen - open memory as stream

SYNOPSIS
#include <stdio.h>

FILE *fmemopen(void *buf , size_t size, const char *mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmemopen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The fmemopen() function opens a stream that permits the access specified by mode. The stream allows I/O
to be performed on the string or memory buffer pointed to by buf .

The mode argument specifies the semantics of I/O on the stream, and is one of the following:

r The stream is opened for reading.

w The stream is opened for writing.

a Append; open the stream for writing, with the initial buffer position set to the first null byte.

r+ Open the stream for reading and writing.

w+ Open the stream for reading and writing. The buffer contents are truncated (i.e., '\0' is placed in
the first byte of the buffer).

a+ Append; open the stream for reading and writing, with the initial buffer position set to the first
null byte.

The stream maintains the notion of a current position, the location where the next I/O operation will be per-
formed. The current position is implicitly updated by I/O operations. It can be explicitly updated using
fseek(3), and determined using ftell(3). In all modes other than append, the initial position is set to the start
of the buffer. In append mode, if no null byte is found within the buffer, then the initial position is size+1.

If buf is specified as NULL, then fmemopen() allocates a buffer of size bytes. This is useful for an appli-
cation that wants to write data to a temporary buffer and then read it back again. The initial position is set
to the start of the buffer. The buffer is automatically freed when the stream is closed. Note that the caller
has no way to obtain a pointer to the temporary buffer allocated by this call (but see open_memstream(3)).

If buf is not NULL, then it should point to a buffer of at least len bytes allocated by the caller.

When a stream that has been opened for writing is flushed (fflush(3)) or closed (fclose(3)), a null byte is
written at the end of the buffer if there is space. The caller should ensure that an extra byte is available in
the buffer (and that size counts that byte) to allow for this.

In a stream opened for reading, null bytes ('\0') in the buffer do not cause read operations to return an end-
of-file indication. A read from the buffer will indicate end-of-file only when the current buffer position ad-
vances size bytes past the start of the buffer.

Write operations take place either at the current position (for modes other than append), or at the current
size of the stream (for append modes).

Attempts to write more than size bytes to the buffer result in an error. By default, such errors will be visible
(by the absence of data) only when the stdio buffer is flushed. Disabling buffering with the following call
may be useful to detect errors at the time of an output operation:

setbuf(stream, NULL);

GNU 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fseek
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/ftell
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/open_memstream
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fflush
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fclose

FMEMOPEN (3) Linux Programmer’s Manual FMEMOPEN (3)

RETURN VALUE
Upon successful completion, fmemopen() returns a FILE pointer. Otherwise, NULL is returned and errno
is set to indicate the error.

VERSIONS
fmemopen() was already available in glibc 1.0.x.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safefmemopen(),

CONFORMING TO
POSIX.1-2008. This function is not specified in POSIX.1-2001, and is not widely available on other sys-
tems.

POSIX.1-2008 specifies that 'b' in mode shall be ignored. However, Technical Corrigendum 1 adjusts the
standard to allow implementation-specific treatment for this case, thus permitting the glibc treatment of 'b'.

NOTES
There is no file descriptor associated with the file stream returned by this function (i.e., fileno(3) will return
an error if called on the returned stream).

With version 2.22, binary mode (see below) was removed, many longstanding bugs in the implementation
of fmemopen() were fixed, and a new versioned symbol was created for this interface.

Binary mode
From version 2.9 to 2.21, the glibc implementation of fmemopen() supported a "binary" mode, enabled by
specifying the letter 'b' as the second character in mode. In this mode, writes don’t implicitly add a termi-
nating null byte, and fseek(3) SEEK_END is relative to the end of the buffer (i.e., the value specified by
the size argument), rather than the current string length.

An API bug afflicted the implementation of binary mode: to specify binary mode, the 'b' must be the sec-
ond character in mode. Thus, for example, "wb+" has the desired effect, but "w+b" does not. This is in-
consistent with the treatment of mode by fopen(3).

Binary mode was removed in glibc 2.22; a 'b' specified in mode has no effect.

BUGS
In versions of glibc before 2.22, if size is specified as zero, fmemopen() fails with the error EINVAL. It
would be more consistent if this case successfully created a stream that then returned end-of-file on the first
attempt at reading; since version 2.22, the glibc implementation provides that behavior.

In versions of glibc before 2.22, specifying append mode ("a" or "a+") for fmemopen() sets the initial
buffer position to the first null byte, but (if the current position is reset to a location other than the end of the
stream) does not force subsequent writes to append at the end of the stream. This bug is fixed in glibc 2.22.

In versions of glibc before 2.22, if the mode argument to fmemopen() specifies append ("a" or "a+"), and
the size argument does not cover a null byte in buf , then, according to POSIX.1-2008, the initial buffer po-
sition should be set to the next byte after the end of the buffer. However, in this case the glibc fmemopen()
sets the buffer position to -1. This bug is fixed in glibc 2.22.

In versions of glibc before 2.22, when a call to fseek(3) with a whence value of SEEK_END was per-
formed on a stream created by fmemopen(), the offset was subtracted from the end-of-stream position, in-
stead of being added. This bug is fixed in glibc 2.22.

The glibc 2.9 addition of "binary" mode for fmemopen() silently changed the ABI: previously, fmemo-
pen() ignored 'b' in mode.

EXAMPLE
The program below uses fmemopen() to open an input buffer, and open_memstream(3) to open a dynami-
cally sized output buffer. The program scans its input string (taken from the program’s first command-line

GNU 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fileno
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fseek
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fopen
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fseek
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/open_memstream

FMEMOPEN (3) Linux Programmer’s Manual FMEMOPEN (3)

argument) reading integers, and writes the squares of these integers to the output buffer. An example of the
output produced by this program is the following:

$./a.out '1 23 43'
size=11; ptr=1 529 1849

Program source

#define _GNU_SOURCE
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

int
main(int argc, char *argv[])
{
FILE *out, *in;
int v, s;
size_t size;
char *ptr;

if (argc != 2) {
fprintf(stderr, "Usage: %s '<num>...'\n", argv[0]);
exit(EXIT_FAILURE);
}

in = fmemopen(argv[1], strlen(argv[1]), "r");
if (in == NULL)
handle_error("fmemopen");

out = open_memstream(&ptr, &size);
if (out == NULL)
handle_error("open_memstream");

for (;;) {
s = fscanf(in, "%d", &v);
if (s <= 0)
break;

s = fprintf(out, "%d ", v * v);
if (s == -1)
handle_error("fprintf");
}

fclose(in);
fclose(out);

printf("size=%zu; ptr=%s\n", size, ptr);

free(ptr);
exit(EXIT_SUCCESS);
}

SEE ALSO
fopen(3), fopencookie(3), open_memstream(3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at

GNU 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fopen
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fopencookie
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/open_memstream

FMEMOPEN (3) Linux Programmer’s Manual FMEMOPEN (3)

https://www.kernel.org/doc/man-pages/.

GNU 2017-09-15 4

https://www.kernel.org/doc/man

	FMEMOPEN(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS
	Since glibc 2.10:

	DESCRIPTION
	DESCRIPTION
	r

	RETURN VALUE
	RETURN VALUE

	VERSIONS
	VERSIONS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES
	Binary mode
	Binary mode

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

