
FTW (3) Linux Programmer’s Manual FTW (3)

NAME
ftw, nftw - file tree walk

SYNOPSIS
#include <ftw.h>

int nftw(const char *dirpath,
int (* fn) (const char * fpath, const struct stat *sb,

int typeflag, struct FTW * ftwbuf),
int nopenfd , int flags);

#include <ftw.h>

int ftw(const char *dirpath,
int (* fn) (const char * fpath, const struct stat *sb,

int typeflag),
int nopenfd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nftw(): _XOPEN_SOURCE >= 500

DESCRIPTION
nftw() walks through the directory tree that is located under the directory dirpath, and calls fn() once for
each entry in the tree. By default, directories are handled before the files and subdirectories they contain
(preorder traversal).

To avoid using up all of the calling process’s file descriptors, nopenfd specifies the maximum number of di-
rectories that nftw() will hold open simultaneously. When the search depth exceeds this, nftw() will be-
come slower because directories have to be closed and reopened. nftw() uses at most one file descriptor for
each level in the directory tree.

For each entry found in the tree, nftw() calls fn() with four arguments: fpath, sb, typeflag, and ftwbuf .
fpath is the pathname of the entry, and is expressed either as a pathname relative to the calling process’s
current working directory at the time of the call to nftw(), if dirpath was expressed as a relative pathname,
or as an absolute pathname, if dirpath was expressed as an absolute pathname. sb is a pointer to the stat
structure returned by a call to stat(2) for fpath.

The typeflag argument passed to fn() is an integer that has one of the following values:

FTW_F
fpath is a regular file.

FTW_D
fpath is a directory.

FTW_DNR
fpath is a directory which can’t be read.

FTW_DP
fpath is a directory, and FTW_DEPTH was specified in flags. (If FTW_DEPTH was not speci-
fied in flags, then directories will always be visited with typeflag set to FTW_D.) All of the files
and subdirectories within fpath have been processed.

FTW_NS
The stat(2) call failed on fpath, which is not a symbolic link. The probable cause for this is that
the caller had read permission on the parent directory, so that the filename fpath could be seen, but
did not have execute permission, so that the file could not be reached for stat(2). The contents of
the buffer pointed to by sb are undefined.

FTW_SL
fpath is a symbolic link, and FTW_PHYS was set in flags.

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat

FTW (3) Linux Programmer’s Manual FTW (3)

FTW_SLN
fpath is a symbolic link pointing to a nonexistent file. (This occurs only if FTW_PHYS is not
set.) On most implementations, in this case the sb argument passed to fn() contains information
returned by performing lstat(2) on the symbolic link. For the details on Linux, see BUGS.

The fourth argument (ftwbuf) that nftw() supplies when calling fn() is a pointer to a structure of type FTW:

struct FTW {
int base;
int level;
};

base is the offset of the filename (i.e., basename component) in the pathname given in fpath. level is the
depth of fpath in the directory tree, relative to the root of the tree (dirpath, which has depth 0).

To stop the tree walk, fn() returns a nonzero value; this value will become the return value of nftw(). As
long as fn() returns 0, nftw() will continue either until it has traversed the entire tree, in which case it will
return zero, or until it encounters an error (such as a malloc(3) failure), in which case it will return -1.

Because nftw() uses dynamic data structures, the only safe way to exit out of a tree walk is to return a
nonzero value from fn(). To allow a signal to terminate the walk without causing a memory leak, have the
handler set a global flag that is checked by fn(). Don’t use longjmp(3) unless the program is going to termi-
nate.

The flags argument of nftw() is formed by ORing zero or more of the following flags:

FTW_ACTIONRETVAL (since glibc 2.3.3)
If this glibc-specific flag is set, then nftw() handles the return value from fn() differently. fn()
should return one of the following values:

FTW_CONTINUE
Instructs nftw() to continue normally.

FTW_SKIP_SIBLINGS
If fn() returns this value, then siblings of the current entry will be skipped, and processing
continues in the parent.

FTW_SKIP_SUBTREE
If fn() is called with an entry that is a directory (typeflag is FTW_D), this return value
will prevent objects within that directory from being passed as arguments to fn(). nftw()
continues processing with the next sibling of the directory.

FTW_STOP
Causes nftw() to return immediately with the return value FTW_STOP.

Other return values could be associated with new actions in the future; fn() should not return val-
ues other than those listed above.

The feature test macro _GNU_SOURCE must be defined (before including any header files) in
order to obtain the definition of FTW_ACTIONRETVAL from <ftw.h>.

FTW_CHDIR
If set, do a chdir(2) to each directory before handling its contents. This is useful if the program
needs to perform some action in the directory in which fpath resides. (Specifying this flag has no
effect on the pathname that is passed in the fpath argument of fn.)

FTW_DEPTH
If set, do a post-order traversal, that is, call fn() for the directory itself after handling the contents
of the directory and its subdirectories. (By default, each directory is handled before its contents.)

FTW_MOUNT
If set, stay within the same filesystem (i.e., do not cross mount points).

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/lstat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/malloc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/longjmp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chdir

FTW (3) Linux Programmer’s Manual FTW (3)

FTW_PHYS
If set, do not follow symbolic links. (This is what you want.) If not set, symbolic links are fol-
lowed, but no file is reported twice.

If FTW_PHYS is not set, but FTW_DEPTH is set, then the function fn() is never called for a di-
rectory that would be a descendant of itself.

ftw()
ftw() is an older function that offers a subset of the functionality of nftw(). The notable differences are as
follows:

* ftw() has no flags argument. It behaves the same as when nftw() is called with flags specified as zero.

* The callback function, fn(), is not supplied with a fourth argument.

* The range of values that is passed via the typeflag argument supplied to fn() is smaller: just FTW_F,
FTW_D, FTW_DNR, FTW_NS, and (possibly) FTW_SL.

RETURN VALUE
These functions return 0 on success, and -1 if an error occurs.

If fn() returns nonzero, then the tree walk is terminated and the value returned by fn() is returned as the re-
sult of ftw() or nftw().

If nftw() is called with the FTW_ACTIONRETVAL flag, then the only nonzero value that should be used
by fn() to terminate the tree walk is FTW_STOP, and that value is returned as the result of nftw().

VERSIONS
nftw() is available under glibc since version 2.1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safe cwdnftw()

Thread safety MT-Safeftw()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, SVr4, SUSv1. POSIX.1-2008 marks ftw() as obsolete.

NOTES
POSIX.1-2008 notes that the results are unspecified if fn does not preserve the current working directory.

The function nftw() and the use of FTW_SL with ftw() were introduced in SUSv1.

In some implementations (e.g., glibc), ftw() will never use FTW_SL, on other systems FTW_SL occurs
only for symbolic links that do not point to an existing file, and again on other systems ftw() will use
FTW_SL for each symbolic link. If fpath is a symbolic link and stat(2) failed, POSIX.1-2008 states that it
is undefined whether FTW_NS or FTW_SL is passed in typeflag. For predictable results, use nftw().

BUGS
In the specification of nftw(), POSIX.1 notes that when FTW_NS is passed as the typeflag argument of
fn(), then the contents of the buffer pointed to by the sb argument are undefined. The standard makes no
such statement for the case where FTW_SLN is passed in typeflag, with the implication that the contents of
the buffer pointed to by sb are defined. And indeed this is the case on most implementations: the buffer
pointed to by sb contains the results produced by applying lstat(2) to the symbolic link. In early glibc, the
behavior was the same. However, since glibc 2.4, the contents of the buffer pointed to by sb are undefined
when FTW_SLN is passed in typeflag. This change appears to be an unintended regression, but it is not
(yet) clear if the behavior will be restored to that provided in the original glibc implementation (and on
other implementations).

EXAMPLE
The following program traverses the directory tree under the path named in its first command-line argu-
ment, or under the current directory if no argument is supplied. It displays various information about each

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/lstat

FTW (3) Linux Programmer’s Manual FTW (3)

file. The second command-line argument can be used to specify characters that control the value assigned
to the flags argument when calling nftw().

Program source

#define _XOPEN_SOURCE 500
#include <ftw.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>

static int
display_info(const char *fpath, const struct stat *sb,
int tflag, struct FTW *ftwbuf)
{
printf("%-3s %2d ",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ? "f" :
(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "???",
ftwbuf->level);

if (tflag == FTW_NS)
printf("-------");
else
printf("%7jd", (intmax_t) sb->st_size);

printf(" %-40s %d %s\n",
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{
int flags = 0;

if (argc > 2 && strchr(argv[2], 'd') != NULL)
flags |= FTW_DEPTH;
if (argc > 2 && strchr(argv[2], 'p') != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags)
== -1) {
perror("nftw");
exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
stat(2), fts(3), readdir(3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/stat
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fts
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/readdir
https://www.kernel.org/doc/man

	FTW(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	ftw()
	ftw()

	RETURN VALUE
	RETURN VALUE

	VERSIONS
	VERSIONS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

