
INSQUE(3) Linux Programmer’s Manual INSQUE(3)

NAME
insque, remque - insert/remove an item from a queue

SYNOPSIS
#include <search.h>

void insque(void *elem, void *prev);

void remque(void *elem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

insque(), remque():
_XOPEN_SOURCE >= 500 || /* Glibc since 2.19: */ _DEFAULT_SOURCE || /* Glibc versions <=
2.19: */ _SVID_SOURCE

DESCRIPTION
The insque() and remque() functions manipulate doubly-linked lists. Each element in the list is a structure
of which the first two elements are a forward and a backward pointer. The linked list may be linear (i.e.,
NULL forward pointer at the end of the list and NULL backward pointer at the start of the list) or circular.

The insque() function inserts the element pointed to by elem immediately after the element pointed to by
prev.

If the list is linear, then the call insque(elem, NULL) can be used to insert the initial list element, and the
call sets the forward and backward pointers of elem to NULL.

If the list is circular, the caller should ensure that the forward and backward pointers of the first element are
initialized to point to that element, and the prev argument of the insque() call should also point to the ele-
ment.

The remque() function removes the element pointed to by elem from the doubly-linked list.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safeinsque(), remque()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
On ancient systems, the arguments of these functions were of type struct qelem *, defined as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_data[1];
};

This is still what you will get if _GNU_SOURCE is defined before including <search.h>.

The location of the prototypes for these functions differs among several versions of UNIX. The above is
the POSIX version. Some systems place them in <string.h>.

BUGS
In glibc 2.4 and earlier, it was not possible to specify prev as NULL. Consequently, to build a linear list,
the caller had to build a list using an initial call that contained the first two elements of the list, with the for-
ward and backward pointers in each element suitably initialized.

EXAMPLE
The program below demonstrates the use of insque(). Here is an example run of the program:

$./a.out -c a b c
Traversing completed list:

2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/feature_test_macros
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes

INSQUE(3) Linux Programmer’s Manual INSQUE(3)

a
b
c
That was a circular list

Program source

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <search.h>

struct element {
struct element *forward;
struct element *backward;
char *name;
};

static struct element *
new_element(void)
{
struct element *e;

e = malloc(sizeof(struct element));
if (e == NULL) {
fprintf(stderr, "malloc() failed\n");
exit(EXIT_FAILURE);
}

return e;
}

int
main(int argc, char *argv[])
{
struct element *first, *elem, *prev;
int circular, opt, errfnd;

/* The "-c" command-line option can be used to specify that the
list is circular */

errfnd = 0;
circular = 0;
while ((opt = getopt(argc, argv, "c")) != -1) {
switch (opt) {
case ’c’:
circular = 1;
break;
default:
errfnd = 1;
break;
}
}

if (errfnd || optind >= argc) {
fprintf(stderr, "Usage: %s [-c] string...\n", argv[0]);
exit(EXIT_FAILURE);
}

/* Create first element and place it in the linked list */

2017-09-15 2

INSQUE(3) Linux Programmer’s Manual INSQUE(3)

elem = new_element();
first = elem;

elem->name = argv[optind];

if (circular) {
elem->forward = elem;
elem->backward = elem;
insque(elem, elem);
} else {
insque(elem, NULL);
}

/* Add remaining command-line arguments as list elements */

while (++optind < argc) {
prev = elem;

elem = new_element();
elem->name = argv[optind];
insque(elem, prev);
}

/* Traverse the list from the start, printing element names */

printf("Traversing completed list:\n");
elem = first;
do {
printf(" %s\n", elem->name);
elem = elem->forward;
} while (elem != NULL && elem != first);

if (elem == first)
printf("That was a circular list\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
queue(3)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/queue
https://www.kernel.org/doc/man

	INSQUE(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

