
PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

NAME
pthread_create - create a new thread

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *thread , const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

Compile and link with -pthread.

DESCRIPTION
The pthread_create() function starts a new thread in the calling process. The new thread starts execution
by invoking start_routine(); arg is passed as the sole argument of start_routine().

The new thread terminates in one of the following ways:

* It calls pthread_exit(3), specifying an exit status value that is available to another thread in the same
process that calls pthread_join(3).

* It returns from start_routine(). This is equivalent to calling pthread_exit(3) with the value supplied in
the return statement.

* It is canceled (see pthread_cancel(3)).

* Any of the threads in the process calls exit(3), or the main thread performs a return from main(). This
causes the termination of all threads in the process.

The attr argument points to a pthread_attr_t structure whose contents are used at thread creation time to
determine attributes for the new thread; this structure is initialized using pthread_attr_init(3) and related
functions. If attr is NULL, then the thread is created with default attributes.

Before returning, a successful call to pthread_create() stores the ID of the new thread in the buffer pointed
to by thread; this identifier is used to refer to the thread in subsequent calls to other pthreads functions.

The new thread inherits a copy of the creating thread’s signal mask (pthread_sigmask(3)). The set of pend-
ing signals for the new thread is empty (sigpending(2)). The new thread does not inherit the creating
thread’s alternate signal stack (sigaltstack(2)).

The new thread inherits the calling thread’s floating-point environment (fenv(3)).

The initial value of the new thread’s CPU-time clock is 0 (see pthread_getcpuclockid(3)).

Linux-specific details
The new thread inherits copies of the calling thread’s capability sets (see capabilities(7)) and CPU affinity
mask (see sched_setaffinity(2)).

RETURN VALUE
On success, pthread_create() returns 0; on error, it returns an error number, and the contents of *thread are
undefined.

ERRORS
EAGAIN

Insufficient resources to create another thread.

EAGAIN
A system-imposed limit on the number of threads was encountered. There are a number of limits
that may trigger this error: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which
limits the number of processes and threads for a real user ID, was reached; the kernel’s system-
wide limit on the number of processes and threads, /proc/sys/kernel/threads-max, was reached
(see proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see
proc(5)).

EINVAL
Invalid settings in attr.

Linux 2018-04-30 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_cancel
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_sigmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigpending
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigaltstack
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fenv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_getcpuclockid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setaffinity
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

EPERM
No permission to set the scheduling policy and parameters specified in attr.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Interface Attribute Value
Thread safety MT-Safepthread_create()

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.

NOTES
See pthread_self(3) for further information on the thread ID returned in *thread by pthread_create(). Un-
less real-time scheduling policies are being employed, after a call to pthread_create(), it is indeterminate
which thread—the caller or the new thread—will next execute.

A thread may either be joinable or detached . If a thread is joinable, then another thread can call
pthread_join(3) to wait for the thread to terminate and fetch its exit status. Only when a terminated joinable
thread has been joined are the last of its resources released back to the system. When a detached thread ter-
minates, its resources are automatically released back to the system: it is not possible to join with the thread
in order to obtain its exit status. Making a thread detached is useful for some types of daemon threads
whose exit status the application does not need to care about. By default, a new thread is created in a join-
able state, unless attr was set to create the thread in a detached state (using pthread_attr_setdetachstate(3)).

Under the NPTL threading implementation, if the RLIMIT_STACK soft resource limit at the time the pro-
gram started has any value other than "unlimited", then it determines the default stack size of new threads.
Using pthread_attr_setstacksize(3), the stack size attribute can be explicitly set in the attr argument used to
create a thread, in order to obtain a stack size other than the default. If the RLIMIT_STACK resource
limit is set to "unlimited", a per-architecture value is used for the stack size. Here is the value for a few ar-
chitectures:

Architecture Default stack size
i386 2 MB

IA-64 32 MB

PowerPC 4 MB

S/390 2 MB

Sparc-32 2 MB

Sparc-64 4 MB

x86_64 2 MB

BUGS
In the obsolete LinuxThreads implementation, each of the threads in a process has a different process ID.
This is in violation of the POSIX threads specification, and is the source of many other nonconformances to
the standard; see pthreads(7).

EXAMPLE
The program below demonstrates the use of pthread_create(), as well as a number of other functions in the
pthreads API.

In the following run, on a system providing the NPTL threading implementation, the stack size defaults to
the value given by the "stack size" resource limit:

$ ulimit -s
8192 # The stack size limit is 8 MB (0x800000 bytes)
$./a.out hola salut servus
Thread 1: top of stack near 0xb7dd03b8; argv_string=hola
Thread 2: top of stack near 0xb75cf3b8; argv_string=salut
Thread 3: top of stack near 0xb6dce3b8; argv_string=servus

Linux 2018-04-30 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_self
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setdetachstate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setstacksize
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

In the next run, the program explicitly sets a stack size of 1 MB (using pthread_attr_setstacksize(3)) for the
created threads:

$./a.out -s 0x100000 hola salut servus
Thread 1: top of stack near 0xb7d723b8; argv_string=hola
Thread 2: top of stack near 0xb7c713b8; argv_string=salut
Thread 3: top of stack near 0xb7b703b8; argv_string=servus
Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

Program source

#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <ctype.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)

struct thread_info { /* Used as argument to thread_start() */
pthread_t thread_id; /* ID returned by pthread_create() */
int thread_num; /* Application-defined thread # */
char *argv_string; /* From command-line argument */
};

/* Thread start function: display address near top of our stack,
and return upper-cased copy of argv_string */

static void *
thread_start(void *arg)
{
struct thread_info *tinfo = arg;
char *uargv, *p;

printf("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, &p, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);
if (uargv == NULL)
handle_error("strdup");

for (p = uargv; *p != '\0'; p++)
*p = toupper(*p);

return uargv;
}

int
main(int argc, char *argv[])

Linux 2018-04-30 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setstacksize

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

{
int s, tnum, opt, num_threads;
struct thread_info *tinfo;
pthread_attr_t attr;
int stack_size;
void *res;

/* The "-s" option specifies a stack size for our threads */

stack_size = -1;
while ((opt = getopt(argc, argv, "s:")) != -1) {
switch (opt) {
case 's':
stack_size = strtoul(optarg, NULL, 0);
break;

default:
fprintf(stderr, "Usage: %s [-s stack-size] arg...\n",
argv[0]);
exit(EXIT_FAILURE);
}
}

num_threads = argc - optind;

/* Initialize thread creation attributes */

s = pthread_attr_init(&attr);
if (s != 0)
handle_error_en(s, "pthread_attr_init");

if (stack_size > 0) {
s = pthread_attr_setstacksize(&attr, stack_size);
if (s != 0)
handle_error_en(s, "pthread_attr_setstacksize");
}

/* Allocate memory for pthread_create() arguments */

tinfo = calloc(num_threads, sizeof(struct thread_info));
if (tinfo == NULL)
handle_error("calloc");

/* Create one thread for each command-line argument */

for (tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum].thread_num = tnum + 1;
tinfo[tnum].argv_string = argv[optind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[] */

s = pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);
if (s != 0)
handle_error_en(s, "pthread_create");
}

/* Destroy the thread attributes object, since it is no
longer needed */

s = pthread_attr_destroy(&attr);

Linux 2018-04-30 4

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

if (s != 0)
handle_error_en(s, "pthread_attr_destroy");

/* Now join with each thread, and display its returned value */

for (tnum = 0; tnum < num_threads; tnum++) {
s = pthread_join(tinfo[tnum].thread_id, &res);
if (s != 0)
handle_error_en(s, "pthread_join");

printf("Joined with thread %d; returned value was %s\n",
tinfo[tnum].thread_num, (char *) res);
free(res); /* Free memory allocated by thread */
}

free(tinfo);
exit(EXIT_SUCCESS);
}

SEE ALSO
getrlimit(2), pthread_attr_init(3), pthread_cancel(3), pthread_detach(3), pthread_equal(3), pthread_exit(3),
pthread_getattr_np(3), pthread_join(3), pthread_self(3), pthread_setattr_default_np(3), pthreads(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2018-04-30 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_cancel
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_detach
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_equal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_getattr_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_self
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_setattr_default_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads
https://www.kernel.org/doc/man

	PTHREAD_CREATE(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Linux-specific details
	Linux-specific details

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

