PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

NAME

pthread_create — create a new thread

SYNOPSIS

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

Compile and link with —pthread.

DESCRIPTION

The pthread_create() function starts a new thread in the calling process. The new thread starts execution
by invoking start_routine(); arg is passed as the sole argument of start_routine().

The new thread terminates in one of the following ways:

* Tt calls pthread_exit(3), specifying an exit status value that is available to another thread in the same
process that calls pthread_join(3).

* Tt returns from start_routine(). This is equivalent to calling pthread_exit(3) with the value supplied in
the return statement.

* Tt is canceled (see pthread_cancel(3)).

* Any of the threads in the process calls exit(3), or the main thread performs a return from main(). This
causes the termination of all threads in the process.

The attr argument points to a pthread_attr_t structure whose contents are used at thread creation time to
determine attributes for the new thread; this structure is initialized using pthread_attr_init(3) and related
functions. If attr is NULL, then the thread is created with default attributes.

Before returning, a successful call to pthread_create() stores the ID of the new thread in the buffer pointed
to by thread; this identifier is used to refer to the thread in subsequent calls to other pthreads functions.

The new thread inherits a copy of the creating thread’s signal mask (pthread_sigmask(3)). The set of pend-
ing signals for the new thread is empty (sigpending(2)). The new thread does not inherit the creating
thread’s alternate signal stack (sigaltstack(2)).

The new thread inherits the calling thread’s floating-point environment (fenv(3)).

The initial value of the new thread’s CPU-time clock is 0 (see pthread_getcpuclockid(3)).

Linux-specific details

The new thread inherits copies of the calling thread’s capability sets (see capabilities(7)) and CPU affinity
mask (see sched_setaffinity(2)).

RETURN VALUE

On success, pthread_create() returns 0; on error, it returns an error number, and the contents of *thread are
undefined.

ERRORS
EAGAIN
Insufficient resources to create another thread.
EAGAIN
A system-imposed limit on the number of threads was encountered. There are a number of limits
that may trigger this error: the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which
limits the number of processes and threads for a real user ID, was reached; the kernel’s system-
wide limit on the number of processes and threads, /proc/sys/kernel/threads-max, was reached
(see proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see
proc(5)).
EINVAL
Invalid settings in attr.
Linux 2018-04-30 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_cancel
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_sigmask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigpending
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sigaltstack
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/fenv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_getcpuclockid
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sched_setaffinity
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

EPERM
No permission to set the scheduling policy and parameters specified in attr.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value
pthread_create() | Thread safety | MT-Safe

CONFORMING TO

POSIX.1-2001, POSIX.1-2008.

NOTES

BUGS

See pthread_self(3) for further information on the thread ID returned in *thread by pthread_create(). Un-
less real-time scheduling policies are being employed, after a call to pthread_create(), it is indeterminate
which thread—the caller or the new thread—will next execute.

A thread may either be joinable or detached. If a thread is joinable, then another thread can call
pthread_join(3) to wait for the thread to terminate and fetch its exit status. Only when a terminated joinable
thread has been joined are the last of its resources released back to the system. When a detached thread ter-
minates, its resources are automatically released back to the system: it is not possible to join with the thread
in order to obtain its exit status. Making a thread detached is useful for some types of daemon threads
whose exit status the application does not need to care about. By default, a new thread is created in a join-
able state, unless attr was set to create the thread in a detached state (using pthread_attr_setdetachstate(3)).

Under the NPTL threading implementation, if the RLIMIT_STACK soft resource limit at the time the pro-
gram started has any value other than "unlimited", then it determines the default stack size of new threads.
Using pthread_attr_setstacksize(3), the stack size attribute can be explicitly set in the attr argument used to
create a thread, in order to obtain a stack size other than the default. If the RLIMIT_STACK resource
limit is set to "unlimited", a per-architecture value is used for the stack size. Here is the value for a few ar-
chitectures:

Architecture | Default stack size
1386 2 MB
1A-64 32 MB
PowerPC 4 MB
S/390 2 MB
Sparc-32 2 MB
Sparc-64 4 MB
x86_64 2 MB

In the obsolete LinuxThreads implementation, each of the threads in a process has a different process ID.
This is in violation of the POSIX threads specification, and is the source of many other nonconformances to
the standard; see pthreads(7).

EXAMPLE

Linux

The program below demonstrates the use of pthread_create(), as well as a number of other functions in the
pthreads APL.

In the following run, on a system providing the NPTL threading implementation, the stack size defaults to
the value given by the "stack size" resource limit:

$ ulimit -s

8192 # The stack size limit is 8 MB (0x800000 bytes)
$./a.out hola salut servus

Thread 1: top of stack near 0xb7dd03b8; argv_string=hola
Thread 2: top of stack near 0xb75cf3b8; argv_string=salut
Thread 3: top of stack near 0xb6dce3b8; argv_string=servus

2018-04-30 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/attributes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_self
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setdetachstate
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setstacksize
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

In the next run, the program explicitly sets a stack size of 1 MB (using pthread_attr_setstacksize(3)) for the
created threads:

$./a.out -s 0x100000 hola salut servus

Thread 1: top of stack near 0xb7d723b8; argv_string=hola
Thread 2: top of stack near 0xb7c¢713b8; argv_string=salut
Thread 3: top of stack near 0xb7b703b8; argv_string=servus
Joined with thread 1; returned value was HOLA

Joined with thread 2; returned value was SALUT

Joined with thread 3; returned value was SERVUS

Program source

#include <pthread.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <ctype.h>

#define handle_error_en(en, msg) \
do { errno = en; perror(msg); exit (EXIT_FAILURE); } while (0)

#define handle_error (msg) \
do { perror (msg); exit (EXIT_FAILURE); } while (0)

struct thread_info { /* Used as argument to thread_start () */
pthread_t thread_id; /* ID returned by pthread_create() */
int thread_num; /* Application-defined thread # */
char *argv_string; /* From command-line argument */

}i

/* Thread start function: display address near top of our stack,
and return upper-cased copy of argv_string */

static void *
thread_start (void *arg)

{
struct thread_info *tinfo = arg;
char *uargv, *p;

printf ("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, &p, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);
if (uargv == NULL)

handle_error ("strdup");

for (p = uargv; *p != '\0'; p++)

*p = toupper (*p);

return uargv;

}

int

main (int argc, char *argv[])

Linux 2018-04-30 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_setstacksize

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

{

int s, tnum, opt, num_threads;
struct thread_info *tinfo;
pthread_attr_t attr;

int stack_size;

void *res;

/* The "-s" option specifies a stack size for our threads */
stack_size = -1;

while ((opt = getopt (argc, argv, "s:")) != -1) {

switch (opt) {

case 's':

stack_size = strtoul (optarg, NULL, 0);

break;

default:

fprintf (stderr, "Usage: %$s [-s stack-size] arg...\n",
argv([0]);

exit (EXIT_FAILURE) ;
}
}

num_threads = argc - optind;
/* Initialize thread creation attributes */

s = pthread_attr_init (&attr);
if (s != 0)
handle_error_en(s, "pthread_attr_init");

if (stack_size > 0) {

s = pthread_attr_setstacksize(&attr, stack_size);
if (s != 0)

handle_error_en(s, "pthread_attr_setstacksize");

}

/* Allocate memory for pthread_create() arguments */
tinfo = calloc (num_threads, sizeof (struct thread_info));
if (tinfo == NULL)

handle_error ("calloc");
/* Create one thread for each command-line argument */

for (tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum] .thread_num = tnum + 1;
tinfo[tnum] .argv_string = argv[optind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[] */

s = pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);

if (s != 0)

handle_error_en(s, "pthread_create");

}

/* Destroy the thread attributes object, since it is no
longer needed */

s = pthread_attr_destroy (&attr);

Linux 2018-04-30 4

PTHREAD_CREATE(3) Linux Programmer’s Manual PTHREAD_CREATE(3)

if (s != 0)
handle_error_en(s, "pthread_attr_destroy");

/* Now join with each thread, and display its returned value */

for (tnum = 0; tnum < num_threads; tnum++) {
s = pthread_join(tinfo[tnum].thread_id, &res);
if (s != 0)

handle_error_en (s, "pthread_join");

printf ("Joined with thread %d; returned value was %s\n",
tinfo[tnum] .thread_num, (char *) res);
free(res); /* Free memory allocated by thread */

}

free(tinfo);
exit (EXIT_SUCCESS) ;
}

SEE ALSO

getrlimit(2), pthread_attr_init(3), pthread_cancel(3), pthread_detach(3), pthread_equal(3), pthread_exit(3),
pthread_getattr_np(3), pthread_join(3), pthread_self(3), pthread_setattr_default_np(3), pthreads(7)

COLOPHON

Linux

This page is part of release 4.16 of the Linux man-pages project. A description of the project, information

about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man—pages/.

2018-04-30

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getrlimit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_attr_init
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_cancel
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_detach
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_equal
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_exit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_getattr_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_join
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_self
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/pthread_setattr_default_np
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/pthreads
https://www.kernel.org/doc/man

	PTHREAD_CREATE(3)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Linux-specific details
	Linux-specific details

	RETURN VALUE
	RETURN VALUE

	ERRORS
	ERRORS

	ATTRIBUTES
	ATTRIBUTES

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

