
Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

NAME
Hash::Util - A selection of general-utility hash subroutines

SYNOPSIS
Restricted hashes

use Hash::Util qw(
fieldhash fieldhashes

all_keys
lock_keys unlock_keys
lock_value unlock_value
lock_hash unlock_hash
lock_keys_plus
hash_locked hash_unlocked
hashref_locked hashref_unlocked
hidden_keys legal_keys

lock_ref_keys unlock_ref_keys
lock_ref_value unlock_ref_value
lock_hashref unlock_hashref
lock_ref_keys_plus
hidden_ref_keys legal_ref_keys

hash_seed hash_value hv_store
bucket_stats bucket_info bucket_array
lock_hash_recurse unlock_hash_recurse
lock_hashref_recurse unlock_hashref_recurse

hash_traversal_mask
);

%hash = (foo => 42, bar => 23);
Ways to restrict a hash
lock_keys(%hash);
lock_keys(%hash, @keyset);
lock_keys_plus(%hash, @additional_keys);

Ways to inspect the properties of a restricted hash
my @legal = legal_keys(%hash);
my @hidden = hidden_keys(%hash);
my $ref = all_keys(%hash,@keys,@hidden);
my $is_locked = hash_locked(%hash);

Remove restrictions on the hash
unlock_keys(%hash);

Lock individual values in a hash
lock_value (%hash, 'foo');
unlock_value(%hash, 'foo');

Ways to change the restrictions on both keys and values
lock_hash (%hash);
unlock_hash(%hash);

perl v5.28.1 2020-07-21 1

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

my $hashes_are_randomised = hash_seed() != 0;

my $int_hash_value = hash_value('string');

my $mask= hash_traversal_mask(%hash);

hash_traversal_mask(%hash,1234);

DESCRIPTION
Hash::Util and Hash::Util::FieldHash contain special functions for manipulating hashes that
don’t really warrant a keyword.

Hash::Util contains a set of functions that support restricted hashes. These are described in this
document. Hash::Util::FieldHash contains an (unrelated) set of functions that support the use of
hashes in inside-out classes, described in Hash::Util::FieldHash.

By default Hash::Util does not export anything.

Restricted hashes
5.8.0 introduces the ability to restrict a hash to a certain set of keys. No keys outside of this set can be
added. It also introduces the ability to lock an individual key so it cannot be deleted and the ability to
ensure that an individual value cannot be changed.

This is intended to largely replace the deprecated pseudo-hashes.

lock_keys
unlock_keys

lock_keys(%hash);
lock_keys(%hash, @keys);

Restricts the given %hash’s set of keys to @keys. If @keys is not given it restricts it to its current
keyset. No more keys can be added. delete() and exists() will still work, but will not alter the set of
allowed keys. Note: the current implementation prevents the hash from being bless()ed while it is in a
locked state. Any attempt to do so will raise an exception. Of course you can still bless() the hash
before you call lock_keys() so this shouldn’t be a problem.

unlock_keys(%hash);

Removes the restriction on the %hash’s keyset.

Note that if any of the values of the hash have been locked they will not be unlocked after this sub
executes.

Both routines return a reference to the hash operated on.

lock_keys_plus
lock_keys_plus(%hash,@additional_keys)

Similar to lock_keys(), with the difference being that the optional key list specifies keys that may
or may not be already in the hash. Essentially this is an easier way to say

lock_keys(%hash,@additional_keys,keys %hash);

Returns a reference to %hash

lock_value
unlock_value

lock_value (%hash, $key);
unlock_value(%hash, $key);

Locks and unlocks the value for an individual key of a hash. The value of a locked key cannot be
changed.

Unless %hash has already been locked the key/value could be deleted regardless of this setting.

perl v5.28.1 2020-07-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Hash::Util
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Hash::Util::FieldHash
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Hash::Util
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Hash::Util::FieldHash
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Hash::Util

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

Returns a reference to the %hash.

lock_hash
unlock_hash

lock_hash(%hash);

lock_hash() locks an entire hash, making all keys and values read-only. No value can be changed, no
keys can be added or deleted.

unlock_hash(%hash);

unlock_hash() does the opposite of lock_hash(). All keys and values are made writable. All values
can be changed and keys can be added and deleted.

Returns a reference to the %hash.

lock_hash_recurse
unlock_hash_recurse

lock_hash_recurse(%hash);

lock_hash() locks an entire hash and any hashes it references recursively, making all keys and values
read-only. No value can be changed, no keys can be added or deleted.

This method only recurses into hashes that are referenced by another hash. Thus a Hash of Hashes
(HoH) will all be restricted, but a Hash of Arrays of Hashes (HoAoH) will only have the top hash
restricted.

unlock_hash_recurse(%hash);

unlock_hash_recurse() does the opposite of lock_hash_recurse(). All keys and values are made
writable. All values can be changed and keys can be added and deleted. Identical recursion
restrictions apply as to lock_hash_recurse().

Returns a reference to the %hash.

hashref_locked
hash_locked

hashref_locked(\%hash) and print "Hash is locked!\n";
hash_locked(%hash) and print "Hash is locked!\n";

Returns true if the hash and its keys are locked.

hashref_unlocked
hash_unlocked

hashref_unlocked(\%hash) and print "Hash is unlocked!\n";
hash_unlocked(%hash) and print "Hash is unlocked!\n";

Returns true if the hash and its keys are unlocked.

legal_keys
my @keys = legal_keys(%hash);

Returns the list of the keys that are legal in a restricted hash. In the case of an unrestricted hash this is
identical to calling keys(%hash).

hidden_keys
my @keys = hidden_keys(%hash);

Returns the list of the keys that are legal in a restricted hash but do not have a value associated to
them. Thus if ’foo’ is a ‘‘hidden’’ key of the %hash it will return false for both defined and
exists tests.

In the case of an unrestricted hash this will return an empty list.

NOTE this is an experimental feature that is heavily dependent on the current implementation of
restricted hashes. Should the implementation change, this routine may become meaningless, in which

perl v5.28.1 2020-07-21 3

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

case it will return an empty list.

all_keys
all_keys(%hash,@keys,@hidden);

Populates the arrays @keys with the all the keys that would pass an exists tests, and populates
@hidden with the remaining legal keys that have not been utilized.

Returns a reference to the hash.

In the case of an unrestricted hash this will be equivalent to

$ref = do {
@keys = keys %hash;
@hidden = ();
\%hash

};

NOTE this is an experimental feature that is heavily dependent on the current implementation of
restricted hashes. Should the implementation change this routine may become meaningless in which
case it will behave identically to how it would behave on an unrestricted hash.

hash_seed
my $hash_seed = hash_seed();

hash_seed() returns the seed bytes used to randomise hash ordering.

Note that the hash seed is sensitive information: by knowing it one can craft a denial-of-service
attack against Perl code, even remotely, see ‘‘Algorithmic Complexity Attacks’’ in perlsec(1) for more
information. Do not disclose the hash seed to people who don’t need to know it. See also
‘‘PERL_HASH_SEED_DEBUG’’ in perlrun.

Prior to Perl 5.17.6 this function returned a UV, it now returns a string, which may be of nearly any
size as determined by the hash function your Perl has been built with. Possible sizes may be but are
not limited to 4 bytes (for most hash algorithms) and 16 bytes (for siphash).

hash_value
my $hash_value = hash_value($string);

hash_value() returns the current perl’s internal hash value for a given string.

Returns a 32 bit integer representing the hash value of the string passed in. This value is only reliable
for the lifetime of the process. It may be different depending on invocation, environment variables,
perl version, architectures, and build options.

Note that the hash value of a given string is sensitive information: by knowing it one can deduce
the hash seed which in turn can allow one to craft a denial-of-service attack against Perl code, even
remotely, see ‘‘Algorithmic Complexity Attacks’’ in perlsec(1) for more information. Do not disclose
the hash value of a string to people who don’t need to know it. See also
‘‘PERL_HASH_SEED_DEBUG’’ in perlrun.

bucket_info
Return a set of basic information about a hash.

my ($keys, $buckets, $used, @length_counts)= bucket_info($hash);

Fields are as follows:

0: Number of keys in the hash
1: Number of buckets in the hash
2: Number of used buckets in the hash
rest : list of counts, Kth element is the number of buckets

with K keys in it.

perl v5.28.1 2020-07-21 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlsec
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlsec

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

See also bucket_stats() and bucket_array().

bucket_stats
Returns a list of statistics about a hash.

my ($keys, $buckets, $used, $quality, $utilization_ratio,
$collision_pct, $mean, $stddev, @length_counts)

= bucket_stats($hashref);

Fields are as follows:

0: Number of keys in the hash
1: Number of buckets in the hash
2: Number of used buckets in the hash
3: Hash Quality Score
4: Percent of buckets used
5: Percent of keys which are in collision
6: Mean bucket length of occupied buckets
7: Standard Deviation of bucket lengths of occupied buckets
rest : list of counts, Kth element is the number of buckets

with K keys in it.

See also bucket_info() and bucket_array().

Note that Hash Quality Score would be 1 for an ideal hash, numbers close to and below 1 indicate
good hashing, and number significantly above indicate a poor score. In practice it should be around
0.95 to 1.05. It is defined as:

$score= sum($count[$length] * ($length * ($length + 1) / 2))
/
(($keys / 2 * $buckets) *
($keys + (2 * $buckets) - 1))

The formula is from the Red Dragon book (reformulated to use the data available) and is documented
at <http://www.strchr.com/hash_functions>

bucket_array
my $array= bucket_array(\%hash);

Returns a packed representation of the bucket array associated with a hash. Each element of the array
is either an integer K, in which case it represents K empty buckets, or a reference to another array
which contains the keys that are in that bucket.

Note that the information returned by bucket_array is sensitive information: by knowing it one
can directly attack perl’s hash function which in turn may allow one to craft a denial-of-service attack
against Perl code, even remotely, see ‘‘Algorithmic Complexity Attacks’’ in perlsec(1) for more
information. Do not disclose the output of this function to people who don’t need to know it. See
also ‘‘PERL_HASH_SEED_DEBUG’’ in perlrun. This function is provided strictly for debugging and
diagnostics purposes only, it is hard to imagine a reason why it would be used in production code.

bucket_stats_formatted
print bucket_stats_formatted($hashref);

Return a formatted report of the information returned by bucket_stats(). An example report looks like
this:

perl v5.28.1 2020-07-21 5

http://www.strchr.com/hash_functions
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/perlsec

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

Keys: 50 Buckets: 33/64 Quality-Score: 1.01 (Good)
Utilized Buckets: 51.56% Optimal: 78.12% Keys In Collision: 34.00%
Chain Length - mean: 1.52 stddev: 0.66
Buckets 64 [0000000000000000000000000000000111111111111111111122222222222333]
Len 0 Pct: 48.44 [###############################]
Len 1 Pct: 29.69 [###################]
Len 2 Pct: 17.19 [###########]
Len 3 Pct: 4.69 [###]
Keys 50 [11111111111111111111111111111111122222222222222333]
Pos 1 Pct: 66.00 [#################################]
Pos 2 Pct: 28.00 [##############]
Pos 3 Pct: 6.00 [###]

The first set of stats gives some summary statistical information, including the quality score translated
into ‘‘Good’’, ‘‘Poor’’ and ‘‘Bad’’, (score<=1.05, score<=1.2, score>1.2). See the documentation in
bucket_stats() for more details.

The two sets of barcharts give stats and a visual indication of performance of the hash.

The first gives data on bucket chain lengths and provides insight on how much work a fetch *miss*
will take. In this case we have to inspect every item in a bucket before we can be sure the item is not in
the list. The performance for an insert is equivalent to this case, as is a delete where the item is not in
the hash.

The second gives data on how many keys are at each depth in the chain, and gives an idea of how
much work a fetch *hit* will take. The performance for an update or delete of an item in the hash is
equivalent to this case.

Note that these statistics are summary only. Actual performance will depend on real hit/miss ratios
accessing the hash. If you are concerned by hit ratios you are recommended to ‘‘oversize’’ your hash
by using something like:

keys(%hash)= keys(%hash) << $k;

With $k chosen carefully, and likely to be a small number like 1 or 2. In theory the larger the bucket
array the less chance of collision.

hv_store
my $sv = 0;
hv_store(%hash,$key,$sv) or die "Failed to alias!";
$hash{$key} = 1;
print $sv; # prints 1

Stores an alias to a variable in a hash instead of copying the value.

hash_traversal_mask
As of Perl 5.18 every hash has its own hash traversal order, and this order changes every time a new
element is inserted into the hash. This functionality is provided by maintaining an unsigned integer
mask (U32) which is xor’ed with the actual bucket id during a traversal of the hash buckets using
keys(), values() or each().

You can use this subroutine to get and set the traversal mask for a specific hash. Setting the mask
ensures that a given hash will produce the same key order. Note that this does not guarantee that two
hashes will produce the same key order for the same hash seed and traversal mask, items that collide
into one bucket may have different orders regardless of this setting.

bucket_ratio
This function behaves the same way that scalar(%hash) behaved prior to Perl 5.25. Specifically if the
hash is tied, then it calls the SCALAR tied hash method, if untied then if the hash is empty it return 0,
otherwise it returns a string containing the number of used buckets in the hash, followed by a slash,
followed by the total number of buckets in the hash.

perl v5.28.1 2020-07-21 6

Hash::Util(3perl) Perl Programmers Reference Guide Hash::Util(3perl)

my %hash=("foo"=>1);
print Hash::Util::bucket_ratio(%hash); # prints "1/8"

used_buckets
This function returns the count of used buckets in the hash. It is expensive to calculate and the value is
NOT cached, so avoid use of this function in production code.

num_buckets
This function returns the total number of buckets the hash holds, or would hold if the array were
created. (When a hash is freshly created the array may not be allocated even though this value will be
non-zero.)

Operating on references to hashes.
Most subroutines documented in this module have equivalent versions that operate on references to hashes
instead of native hashes. The following is a list of these subs. They are identical except in name and in that
instead of taking a %hash they take a $hashref, and additionally are not prototyped.

lock_ref_keys
unlock_ref_keys
lock_ref_keys_plus
lock_ref_value
unlock_ref_value
lock_hashref
unlock_hashref
lock_hashref_recurse
unlock_hashref_recurse
hash_ref_unlocked
legal_ref_keys
hidden_ref_keys

CAVEATS
Note that the trapping of the restricted operations is not atomic: for example

eval { %hash = (illegal_key => 1) }

leaves the %hash empty rather than with its original contents.

BUGS
The interface exposed by this module is very close to the current implementation of restricted hashes. Over
time it is expected that this behavior will be extended and the interface abstracted further.

AUTHOR
Michael G Schwern <schwern@pobox.com> on top of code by Nick Ing-Simmons and Jeffrey Friedl.

hv_store() is from Array::RefElem, Copyright 2000 Gisle Aas.

Additional code by Yves Orton.

SEE ALSO
Scalar::Util, List::Util and ‘‘Algorithmic Complexity Attacks’’ in perlsec.

Hash::Util::FieldHash.

perl v5.28.1 2020-07-21 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Scalar::Util
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/List::Util

	Hash::Util(3perl)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Restricted hashes
	Restricted hashes
	lock_keys
	unlock_keys
	lock_keys_plus
	lock_value
	unlock_value
	lock_hash
	unlock_hash
	lock_hash_recurse
	unlock_hash_recurse
	hashref_locked
	hash_locked
	hashref_unlocked
	hash_unlocked
	legal_keys
	hidden_keys
	all_keys
	hash_seed
	hash_value
	bucket_info
	bucket_stats
	bucket_array
	bucket_stats_formatted
	hv_store
	hash_traversal_mask
	bucket_ratio
	used_buckets
	num_buckets

	Operating on references to hashes.
	Operating on references to hashes.
	lock_ref_keys
	unlock_ref_keys
	lock_ref_keys_plus
	lock_ref_value
	unlock_ref_value
	lock_hashref
	unlock_hashref
	lock_hashref_recurse
	unlock_hashref_recurse
	hash_ref_unlocked
	legal_ref_keys
	hidden_ref_keys

	CAVEATS
	CAVEATS

	BUGS
	BUGS

	AUTHOR
	AUTHOR

	SEE ALSO
	SEE ALSO

