
Symbol(3perl) Perl Programmers Reference Guide Symbol(3perl)

NAME
Symbol - manipulate Perl symbols and their names

SYNOPSIS
use Symbol;

$sym = gensym;
open($sym, '<', "filename");
$_ = <$sym>;
etc.

ungensym $sym; # no effect

replace *FOO{IO} handle but not $FOO, %FOO, etc.
*FOO = geniosym;

print qualify("x"), "\n"; # "main::x"
print qualify("x", "FOO"), "\n"; # "FOO::x"
print qualify("BAR::x"), "\n"; # "BAR::x"
print qualify("BAR::x", "FOO"), "\n"; # "BAR::x"
print qualify("STDOUT", "FOO"), "\n"; # "main::STDOUT" (global)
print qualify(*x), "\n"; # returns *x
print qualify(*x, "FOO"), "\n"; # returns *x

use strict refs;
print { qualify_to_ref $fh } "foo!\n";
$ref = qualify_to_ref $name, $pkg;

use Symbol qw(delete_package);
delete_package('Foo::Bar');
print "deleted\n" unless exists $Foo::{'Bar::'};

DESCRIPTION
Symbol::gensym creates an anonymous glob and returns a reference to it. Such a glob reference can be
used as a file or directory handle.

For backward compatibility with older implementations that didn’t support anonymous globs,
Symbol::ungensym is also provided. But it doesn’t do anything.

Symbol::geniosym creates an anonymous IO handle. This can be assigned into an existing glob
without affecting the non-IO portions of the glob.

Symbol::qualify turns unqualified symbol names into qualified variable names (e.g. ‘‘myvar’’ ->
‘‘MyPackage::myvar’’ If it is given a second parameter, qualify uses it as the default package;
otherwise, it uses the package of its caller. Regardless, global variable names (e.g. ‘‘STDOUT’’, ‘‘ENV’’,
‘‘SIG’’) are always qualified with ‘‘main::’’.

Qualification applies only to symbol names (strings). References are left unchanged under the assumption
that they are glob references, which are qualified by their nature.

Symbol::qualify_to_ref is just like Symbol::qualify except that it returns a glob ref rather
than a symbol name, so you can use the result even if use strict 'refs' is in effect.

Symbol::delete_package wipes out a whole package namespace. Note this routine is not exported
by default — you may want to import it explicitly.

BUGS
Symbol::delete_package is a bit too powerful. It undefines every symbol that lives in the specified
package. Since perl, for performance reasons, does not perform a symbol table lookup each time a function
is called or a global variable is accessed, some code that has already been loaded and that makes use of

perl v5.28.1 2020-07-21 1

Symbol(3perl) Perl Programmers Reference Guide Symbol(3perl)

symbols in package Foo may stop working after you delete Foo, even if you reload the Foo module
afterwards.

perl v5.28.1 2020-07-21 2

	Symbol(3perl)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	BUGS
	BUGS

