
Test(3perl) Perl Programmers Reference Guide Test(3perl)

NAME
Test - provides a simple framework for writing test scripts

SYNOPSIS
use strict;
use Test;

use a BEGIN block so we print our plan before MyModule is loaded
BEGIN { plan tests => 14, todo => [3,4] }

load your module...
use MyModule;

Helpful notes. All note-lines must start with a "#".
print "# I'm testing MyModule version $MyModule::VERSION\n";

ok(0); # failure
ok(1); # success

ok(0); # ok, expected failure (see todo list, above)
ok(1); # surprise success!

ok(0,1); # failure: '0' ne '1'
ok('broke','fixed'); # failure: 'broke' ne 'fixed'
ok('fixed','fixed'); # success: 'fixed' eq 'fixed'
ok('fixed',qr/x/); # success: 'fixed' =˜ qr/x/

ok(sub { 1+1 }, 2); # success: '2' eq '2'
ok(sub { 1+1 }, 3); # failure: '2' ne '3'

my @list = (0,0);
ok @list, 3, "\@list=".join(',',@list); #extra notes
ok 'segmentation fault', '/(?i)success/'; #regex match

skip(
$ˆO =˜ m/MSWin/ ? "Skip if MSWin" : 0, # whether to skip
$foo, $bar # arguments just like for ok(...)

);
skip(
$ˆO =˜ m/MSWin/ ? 0 : "Skip unless MSWin", # whether to skip
$foo, $bar # arguments just like for ok(...)

);

DESCRIPTION
This module simplifies the task of writing test files for Perl modules, such that their output is in the format
that Test::Harness expects to see.

QUICK START GUIDE
To write a test for your new (and probably not even done) module, create a new file called t/test.t (in a new t
directory). If you have multiple test files, to test the ‘‘foo’’, ‘‘bar’’, and ‘‘baz’’ feature sets, then feel free to
call your files t/foo.t, t/bar.t, and t/baz.t

Functions
This module defines three public functions, plan(...), ok(...), and skip(...). By default, all
three are exported by the use Test; statement.

perl v5.28.1 2020-07-21 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::Harness

Test(3perl) Perl Programmers Reference Guide Test(3perl)

plan(...)
BEGIN { plan %theplan; }

This should be the first thing you call in your test script. It declares your testing plan, how many there
will be, if any of them should be allowed to fail, and so on.

Typical usage is just:

use Test;
BEGIN { plan tests => 23 }

These are the things that you can put in the parameters to plan:

tests => number
The number of tests in your script. This means all ok() and skip() calls.

todo => [1,5,14]
A reference to a list of tests which are allowed to fail. See ‘‘TODO TESTS’’.

onfail => sub { ... }
onfail => \&some_sub

A subroutine reference to be run at the end of the test script, if any of the tests fail. See
‘‘ONFAIL’’.

You must call plan(...) once and only once. You should call it in a BEGIN {...} block, like
so:

BEGIN { plan tests => 23 }

ok(...)
ok(1 + 1 == 2);
ok($have, $expect);
ok($have, $expect, $diagnostics);

This function is the reason for Test’s existence. It’s the basic function that handles printing "ok‘‘ or
’’not ok", along with the current test number. (That’s what Test::Harness wants to see.)

In its most basic usage, ok(...) simply takes a single scalar expression. If its value is true, the test
passes; if false, the test fails. Examples:

Examples of ok(scalar)

ok(1 + 1 == 2); # ok if 1 + 1 == 2
ok($foo =˜ /bar/); # ok if $foo contains 'bar'
ok(baz($x + $y) eq 'Armondo'); # ok if baz($x + $y) returns

'Armondo'
ok(@a == @b); # ok if @a and @b are the same

length

The expression is evaluated in scalar context. So the following will work:

ok(@stuff); # ok if @stuff has any
elements

ok(!grep !defined $_, @stuff); # ok if everything in @stuff
is defined.

A special case is if the expression is a subroutine reference (in either sub {...} syntax or \&foo
syntax). In that case, it is executed and its value (true or false) determines if the test passes or fails.
For example,

perl v5.28.1 2020-07-21 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::Harness

Test(3perl) Perl Programmers Reference Guide Test(3perl)

ok(sub { # See whether sleep works at least passably
my $start_time = time;
sleep 5;
time() - $start_time >= 4

});

In its two-argument form, ok(arg1, arg2) compares the two scalar values to see if they match.
They match if both are undefined, or if arg2 is a regex that matches arg1, or if they compare equal
with eq.

Example of ok(scalar, scalar)

ok("this", "that"); # not ok, 'this' ne 'that'
ok("", undef); # not ok, "" is defined

The second argument is considered a regex if it is either a regex object or a string that looks like a
regex. Regex objects are constructed with the qr// operator in recent versions of perl. A string is
considered to look like a regex if its first and last characters are ‘‘/’’, or if the first character is ‘‘m’’ and
its second and last characters are both the same non-alphanumeric non-whitespace character. These
regexp

Regex examples:

ok('JaffO', '/Jaff/'); # ok, 'JaffO' =˜ /Jaff/
ok('JaffO', 'm|Jaff|'); # ok, 'JaffO' =˜ m|Jaff|
ok('JaffO', qr/Jaff/); # ok, 'JaffO' =˜ qr/Jaff/;
ok('JaffO', '/(?i)jaff/); # ok, 'JaffO' =˜ /jaff/i;

If either (or both!) is a subroutine reference, it is run and used as the value for comparing. For
example:

ok sub {
open(OUT, '>', 'x.dat') || die $!;
print OUT "\x{e000}";
close OUT;
my $bytecount = -s 'x.dat';
unlink 'x.dat' or warn "Can't unlink : $!";
return $bytecount;

},
4

;

The above test passes two values to ok(arg1, arg2) — the first a coderef, and the second is the
number 4. Before ok compares them, it calls the coderef, and uses its return value as the real value of
this parameter. Assuming that $bytecount returns 4, ok ends up testing 4 eq 4. Since that’s
true, this test passes.

Finally, you can append an optional third argument, in ok(arg1,arg2, note), where note is a
string value that will be printed if the test fails. This should be some useful information about the test,
pertaining to why it failed, and/or a description of the test. For example:

ok(grep($_ eq 'something unique', @stuff), 1,
"Something that should be unique isn't!\n".
'@stuff = '.join ', ', @stuff

);

Unfortunately, a note cannot be used with the single argument style of ok(). That is, if you try
ok(arg1, note), then Test will interpret this as ok(arg1, arg2), and probably end up
testing arg1 eq arg2 — and that’s not what you want!

perl v5.28.1 2020-07-21 3

Test(3perl) Perl Programmers Reference Guide Test(3perl)

All of the above special cases can occasionally cause some problems. See ‘‘BUGS and CAVEATS’’.

skip(skip_if_true, args...)
This is used for tests that under some conditions can be skipped. It’s basically equivalent to:

if($skip_if_true) {
ok(1);

} else {
ok(args...);

}

...except that the ok(1) emits not just "ok testnum‘‘ but actually ’’ok testnum #
skip_if_true_value".

The arguments after the skip_if_true are what is fed to ok(...) if this test isn’t skipped.

Example usage:

my $if_MSWin =
$ˆO =˜ m/MSWin/ ? 'Skip if under MSWin' : '';

A test to be skipped if under MSWin (i.e., run except under
MSWin)
skip($if_MSWin, thing($foo), thing($bar));

Or, going the other way:

my $unless_MSWin =
$ˆO =˜ m/MSWin/ ? '' : 'Skip unless under MSWin';

A test to be skipped unless under MSWin (i.e., run only under
MSWin)
skip($unless_MSWin, thing($foo), thing($bar));

The tricky thing to remember is that the first parameter is true if you want to skip the test, not run it;
and it also doubles as a note about why it’s being skipped. So in the first codeblock above, read the
code as "skip if MSWin — (otherwise) test whether thing($foo) is thing($bar)‘‘ or for the
second case, ’’skip unless MSWin...".

Also, when your skip_if_reason string is true, it really should (for backwards compatibility with older
Test.pm versions) start with the string ‘‘Skip’’, as shown in the above examples.

Note that in the above cases, thing($foo) and thing($bar) are evaluated — but as long as the
skip_if_true is true, then we skip(...) just tosses out their value (i.e., not bothering to treat
them like values to ok(...). But if you need to not eval the arguments when skipping the test, use
this format:

skip($unless_MSWin,
sub {
This code returns true if the test passes.
(But it doesn't even get called if the test is skipped.)
thing($foo) eq thing($bar)

}
);

or even this, which is basically equivalent:

skip($unless_MSWin,
sub { thing($foo) }, sub { thing($bar) }

);

That is, both are like this:

perl v5.28.1 2020-07-21 4

Test(3perl) Perl Programmers Reference Guide Test(3perl)

if($unless_MSWin) {
ok(1); # but it actually appends "# $unless_MSWin"

so that Test::Harness can tell it's a skip
} else {
Not skipping, so actually call and evaluate...
ok(sub { thing($foo) }, sub { thing($bar) });

}

TEST TYPES
• NORMAL TESTS

These tests are expected to succeed. Usually, most or all of your tests are in this category. If a normal
test doesn’t succeed, then that means that something is wrong.

• SKIPPED TESTS

The skip(...) function is for tests that might or might not be possible to run, depending on the
availability of platform-specific features. The first argument should evaluate to true (think ‘‘yes,
please skip’’) if the required feature is not available. After the first argument, skip(...) works
exactly the same way as ok(...) does.

• TODO TESTS

TODO tests are designed for maintaining an executable TODO list. These tests are expected to fail. If
a TODO test does succeed, then the feature in question shouldn’t be on the TODO list, now should it?

Packages should NOT be released with succeeding TODO tests. As soon as a TODO test starts
working, it should be promoted to a normal test, and the newly working feature should be documented
in the release notes or in the change log.

ONFAIL
BEGIN { plan test => 4, onfail => sub { warn "CALL 911!" } }

Although test failures should be enough, extra diagnostics can be triggered at the end of a test run.
onfail is passed an array ref of hash refs that describe each test failure. Each hash will contain at least
the following fields: package, repetition, and result. (You shouldn’t rely on any other fields
being present.) If the test had an expected value or a diagnostic (or ‘‘note’’) string, these will also be
included.

The optional onfail hook might be used simply to print out the version of your package and/or how to
report problems. It might also be used to generate extremely sophisticated diagnostics for a particularly
bizarre test failure. However it’s not a panacea. Core dumps or other unrecoverable errors prevent the
onfail hook from running. (It is run inside an END block.) Besides, onfail is probably over-kill in
most cases. (Your test code should be simpler than the code it is testing, yes?)

BUGS and CAVEATS
• ok(...)’s special handing of strings which look like they might be regexes can also cause

unexpected behavior. An innocent:

ok($fileglob, '/path/to/some/*stuff/');

will fail, since Test.pm considers the second argument to be a regex! The best bet is to use the one-
argument form:

ok($fileglob eq '/path/to/some/*stuff/');

• ok(...)’s use of string eq can sometimes cause odd problems when comparing numbers, especially
if you’re casting a string to a number:

$foo = "1.0";
ok($foo, 1); # not ok, "1.0" ne 1

Your best bet is to use the single argument form:

perl v5.28.1 2020-07-21 5

Test(3perl) Perl Programmers Reference Guide Test(3perl)

ok($foo == 1); # ok "1.0" == 1

• As you may have inferred from the above documentation and examples, ok’s prototype is ($;$$)
(and, incidentally, skip’s is ($;$$$)). This means, for example, that you can do ok @foo,
@bar to compare the size of the two arrays. But don’t be fooled into thinking that ok @foo, @bar
means a comparison of the contents of two arrays — you’re comparing just the number of elements of
each. It’s so easy to make that mistake in reading ok @foo, @bar that you might want to be very
explicit about it, and instead write ok scalar(@foo), scalar(@bar).

• This almost definitely doesn’t do what you expect:

ok $thingy->can('some_method');

Why? Because can returns a coderef to mean ‘‘yes it can (and the method is this...)’’, and then ok
sees a coderef and thinks you’re passing a function that you want it to call and consider the truth of the
result of! I.e., just like:

ok $thingy->can('some_method')->();

What you probably want instead is this:

ok $thingy->can('some_method') && 1;

If the can returns false, then that is passed to ok. If it returns true, then the larger expression
$thingy->can('some_method')Â &&Â 1 returns 1, which ok sees as a simple signal of
success, as you would expect.

• The syntax for skip is about the only way it can be, but it’s still quite confusing. Just start with the
above examples and you’ll be okay.

Moreover, users may expect this:

skip $unless_mswin, foo($bar), baz($quux);

to not evaluate foo($bar) and baz($quux) when the test is being skipped. But in reality, they
are evaluated, but skip just won’t bother comparing them if $unless_mswin is true.

You could do this:

skip $unless_mswin, sub{foo($bar)}, sub{baz($quux)};

But that’s not terribly pretty. You may find it simpler or clearer in the long run to just do things like
this:

if($ˆO =˜ m/MSWin/) {
print "# Yay, we're under $ˆO\n";
ok foo($bar), baz($quux);
ok thing($whatever), baz($stuff);
ok blorp($quux, $whatever);
ok foo($barzbarz), thang($quux);

} else {
print "# Feh, we're under $ˆO. Watch me skip some tests...\n";
for(1 .. 4) { skip "Skip unless under MSWin" }

}

But be quite sure that ok is called exactly as many times in the first block as skip is called in the
second block.

ENVIRONMENT
If PERL_TEST_DIFF environment variable is set, it will be used as a command for comparing unexpected
multiline results. If you have GNU diff installed, you might want to set PERL_TEST_DIFF to diff -u.
If you don’t have a suitable program, you might install the Text::Diff module and then set
PERL_TEST_DIFF to be perl -MText::Diff -e 'print diff(@ARGV)'. If
PERL_TEST_DIFF isn’t set but the Algorithm::Diff module is available, then it will be used to

perl v5.28.1 2020-07-21 6

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Algorithm::Diff

Test(3perl) Perl Programmers Reference Guide Test(3perl)

show the differences in multiline results.

NOTE
A past developer of this module once said that it was no longer being actively developed. However, rumors
of its demise were greatly exaggerated. Feedback and suggestions are quite welcome.

Be aware that the main value of this module is its simplicity. Note that there are already more ambitious
modules out there, such as Test::More and Test::Unit.

Some earlier versions of this module had docs with some confusing typos in the description of
skip(...).

SEE ALSO
Test::Harness

Test::Simple, Test::More, Devel::Cover

Test::Builder for building your own testing library.

Test::Unit is an interesting XUnit-style testing library.

Test::Inline lets you embed tests in code.

AUTHOR
Copyright (c) 1998-2000 Joshua Nathaniel Pritikin.

Copyright (c) 2001-2002 Michael G. Schwern.

Copyright (c) 2002-2004 Sean M. Burke.

Current maintainer: Jesse Vincent. <jesse@bestpractical.com>

This package is free software and is provided ‘‘as is’’ without express or implied warranty. It may be used,
redistributed and/or modified under the same terms as Perl itself.

perl v5.28.1 2020-07-21 7

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::More
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::Harness
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::Simple
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::More
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/Test::Builder

	Test(3perl)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	QUICK START GUIDE
	QUICK START GUIDE
	Functions
	Functions
	plan(...)
	tests => number
	todo => [1,5,14]
	onfail => sub { ... }
	onfail => &some_sub
	ok(...)
	skip(skip_if_true, args...)

	TEST TYPES
	TEST TYPES

	ONFAIL
	ONFAIL

	BUGS and CAVEATS
	BUGS and CAVEATS

	ENVIRONMENT
	ENVIRONMENT

	NOTE
	NOTE

	SEE ALSO
	SEE ALSO

	AUTHOR
	AUTHOR

