
mro(3perl) Perl Programmers Reference Guide mro(3perl)

NAME
mro - Method Resolution Order

SYNOPSIS
use mro; # enables next::method and friends globally

use mro 'dfs'; # enable DFS MRO for this class (Perl default)
use mro 'c3'; # enable C3 MRO for this class

DESCRIPTION
The ‘‘mro’’ namespace provides several utilities for dealing with method resolution order and method
caching in general.

These interfaces are only available in Perl 5.9.5 and higher. See MRO::Compat on CPAN for a mostly
forwards compatible implementation for older Perls.

OVERVIEW
It’s possible to change the MRO of a given class either by using use mro as shown in the synopsis, or by
using the ‘‘mro::set_mro’’ function below.

The special methods next::method next::can and maybe::next::method are not available
until this mro module has been loaded via use or require.

The C3 MRO
In addition to the traditional Perl default MRO (depth first search, called DFS here), Perl now offers the C3
MRO as well. Perl’s support for C3 is based on the work done in Stevan Little’s module Class::C3, and
most of the C3-related documentation here is ripped directly from there.

What is C3?
C3 is the name of an algorithm which aims to provide a sane method resolution order under multiple
inheritance. It was first introduced in the language Dylan (see links in the ‘‘SEE ALSO’’ section), and then
later adopted as the preferred MRO (Method Resolution Order) for the new-style classes in Python 2.3.
Most recently it has been adopted as the ‘‘canonical’’ MRO for Perl 6 classes, and the default MRO for
Parrot objects as well.

How does C3 work
C3 works by always preserving local precedence ordering. This essentially means that no class will appear
before any of its subclasses. Take, for instance, the classic diamond inheritance pattern:

<A>
/ \

 <C>
\ /
<D>

The standard Perl 5 MRO would be (D, B, A, C). The result being that A appears before C, even though C
is the subclass of A. The C3 MRO algorithm however, produces the following order: (D, B, C, A), which
does not have this issue.

This example is fairly trivial; for more complex cases and a deeper explanation, see the links in the ‘‘SEE
ALSO’’ section.

Functions
mro::get_linear_isa($classname[, $type])

Returns an arrayref which is the linearized MRO of the given class. Uses whichever MRO is currently in
effect for that class by default, or the given MRO (either c3 or dfs if specified as $type).

The linearized MRO of a class is an ordered array of all of the classes one would search when resolving a
method on that class, starting with the class itself.

If the requested class doesn’t yet exist, this function will still succeed, and return [$classname]

Note that UNIVERSAL (and any members of UNIVERSAL’s MRO) are not part of the MRO of a class, even

perl v5.28.1 2020-07-21 1

mro(3perl) Perl Programmers Reference Guide mro(3perl)

though all classes implicitly inherit methods from UNIVERSAL and its parents.

mro::set_mro ($classname, $type)
Sets the MRO of the given class to the $type argument (either c3 or dfs).

mro::get_mro($classname)
Returns the MRO of the given class (either c3 or dfs).

mro::get_isarev($classname)
Gets the mro_isarev for this class, returned as an arrayref of class names. These are every class that
‘‘isa’’ the given class name, even if the isa relationship is indirect. This is used internally by the MRO code
to keep track of method/MRO cache invalidations.

As with mro::get_linear_isa above, UNIVERSAL is special. UNIVERSAL (and parents’) isarev
lists do not include every class in existence, even though all classes are effectively descendants for method
inheritance purposes.

mro::is_universal($classname)
Returns a boolean status indicating whether or not the given classname is either UNIVERSAL itself, or one
of UNIVERSAL’s parents by @ISA inheritance.

Any class for which this function returns true is ‘‘universal’’ in the sense that all classes potentially inherit
methods from it.

mro::invalidate_all_method_caches()
Increments PL_sub_generation, which invalidates method caching in all packages.

mro::method_changed_in($classname)
Invalidates the method cache of any classes dependent on the given class. This is not normally necessary.
The only known case where pure perl code can confuse the method cache is when you manually install a
new constant subroutine by using a readonly scalar value, like the internals of constant do. If you find
another case, please report it so we can either fix it or document the exception here.

mro::get_pkg_gen($classname)
Returns an integer which is incremented every time a real local method in the package $classname
changes, or the local @ISA of $classname is modified.

This is intended for authors of modules which do lots of class introspection, as it allows them to very
quickly check if anything important about the local properties of a given class have changed since the last
time they looked. It does not increment on method/@ISA changes in superclasses.

It’s still up to you to seek out the actual changes, and there might not actually be any. Perhaps all of the
changes since you last checked cancelled each other out and left the package in the state it was in before.

This integer normally starts off at a value of 1 when a package stash is instantiated. Calling it on packages
whose stashes do not exist at all will return 0. If a package stash is completely deleted (not a normal
occurrence, but it can happen if someone does something like undef %PkgName::), the number will be
reset to either 0 or 1, depending on how completely the package was wiped out.

next::method
This is somewhat like SUPER, but it uses the C3 method resolution order to get better consistency in
multiple inheritance situations. Note that while inheritance in general follows whichever MRO is in effect
for the given class, next::method only uses the C3 MRO.

One generally uses it like so:

sub some_method {
my $self = shift;
my $superclass_answer = $self->next::method(@_);
return $superclass_answer + 1;

}

Note that you don’t (re-)specify the method name. It forces you to always use the same method name as
the method you started in.

perl v5.28.1 2020-07-21 2

mro(3perl) Perl Programmers Reference Guide mro(3perl)

It can be called on an object or a class, of course.

The way it resolves which actual method to call is:

1. First, it determines the linearized C3 MRO of the object or class it is being called on.

2. Then, it determines the class and method name of the context it was invoked from.

3. Finally, it searches down the C3 MRO list until it reaches the contextually enclosing class, then
searches further down the MRO list for the next method with the same name as the contextually
enclosing method.

Failure to find a next method will result in an exception being thrown (see below for alternatives).

This is substantially different than the behavior of SUPER under complex multiple inheritance. (This
becomes obvious when one realizes that the common superclasses in the C3 linearizations of a given class
and one of its parents will not always be ordered the same for both.)

Caveat: Calling next::method from methods defined outside the class:

There is an edge case when using next::method from within a subroutine which was created in a
different module than the one it is called from. It sounds complicated, but it really isn’t. Here is an example
which will not work correctly:

*Foo::foo = sub { (shift)->next::method(@_) };

The problem exists because the anonymous subroutine being assigned to the *Foo::foo glob will show
up in the call stack as being called __ANON__ and not foo as you might expect. Since next::method
uses caller to find the name of the method it was called in, it will fail in this case.

But fear not, there’s a simple solution. The module Sub::Name will reach into the perl internals and
assign a name to an anonymous subroutine for you. Simply do this:

use Sub::Name 'subname';
*Foo::foo = subname 'Foo::foo' => sub { (shift)->next::method(@_) };

and things will Just Work.

next::can
This is similar to next::method but just returns either a code reference or undef to indicate that no
further methods of this name exist.

maybe::next::method
In simple cases, it is equivalent to:

$self->next::method(@_) if $self->next::can;

But there are some cases where only this solution works (like goto &maybe::next::method);

SEE ALSO
The original Dylan paper

"<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.3910&rep=rep1&type=pdf>"
4

Pugs
The Pugs prototype Perl 6 Object Model uses C3

Parrot
Parrot now uses C3

"<http://use.perl.org/˜autrijus/journal/25768>"
4

Python 2.3 MRO related links
"<http://www.python.org/2.3/mro.html>"

4

perl v5.28.1 2020-07-21 3

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.3910
http://use.perl.org/~autrijus/journal/25768
http://www.python.org/2.3/mro.html

mro(3perl) Perl Programmers Reference Guide mro(3perl)

"<http://www.python.org/2.2.2/descrintro.html#mro>"
4

Class::C3
Class::C3

AUTHOR
Brandon L. Black, <blblack@gmail.com>

Based on Stevan Little’s Class::C3

perl v5.28.1 2020-07-21 4

http://www.python.org/2.2.2/descrintro.html#mro

	mro(3perl)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	OVERVIEW
	OVERVIEW

	The C3 MRO
	The C3 MRO
	What is C3?
	What is C3?

	How does C3 work
	How does C3 work

	Functions
	Functions
	mro::get_linear_isa($classname [, $type])
	mro::set_mro ($classname, $type)

	mro::get_mro($classname)
	mro::get_mro($classname)

	mro::get_isarev($classname)
	mro::get_isarev($classname)

	mro::is_universal($classname)
	mro::is_universal($classname)

	mro::invalidate_all_method_caches()
	mro::invalidate_all_method_caches()

	mro::method_changed_in($classname)
	mro::method_changed_in($classname)

	mro::get_pkg_gen($classname)
	mro::get_pkg_gen($classname)

	next::method
	next::method

	next::can
	next::can

	maybe::next::method
	maybe::next::method

	SEE ALSO
	SEE ALSO
	The original Dylan paper
	The original Dylan paper
	<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.3910&rep=rep1&type=pdf>

	Pugs
	Pugs

	Parrot
	Parrot
	<http://use.perl.org/~autrijus/journal/25768>

	Python 2.3 MRO related links
	Python 2.3 MRO related links
	<http://www.python.org/2.3/mro.html>
	<http://www.python.org/2.2.2/descrintro.html#mro>

	Class::C3
	Class::C3
	Class::C3

	AUTHOR
	AUTHOR

