
DES_RANDOM_KEY (3SSL) OpenSSL DES_RANDOM_KEY (3SSL)

NAME
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked,
DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,
DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt,
DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys, DES_fcrypt, DES_crypt
- DES encryption

SYNOPSIS
#include <openssl/des.h>

void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule);
void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks, int enc);

void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);

void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
DES_key_schedule *ks1, DES_key_schedule *ks2,
DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec, int enc);

void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
int numbits, long length, DES_key_schedule *schedule,
DES_cblock *ivec);

void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int enc);

void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num, int enc);

void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *schedule, DES_cblock *ivec,
const_DES_cblock *inw, const_DES_cblock *outw, int enc);

void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *ks1,

1.1.1n 2023-08-15 1

DES_RANDOM_KEY (3SSL) OpenSSL DES_RANDOM_KEY (3SSL)

DES_key_schedule *ks2, DES_cblock *ivec, int enc);
void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out,

long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec,
int *num, int enc);

void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int enc);

void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int *num, int enc);

void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
long length, DES_key_schedule *ks1,
DES_key_schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
long length, DES_key_schedule *schedule,
const_DES_cblock *ivec);

DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
long length, int out_count, DES_cblock *seed);

void DES_string_to_key(const char *str, DES_cblock *key);
void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

DESCRIPTION
This library contains a fast implementation of the DES encryption algorithm.

There are two phases to the use of DES encryption. The first is the generation of a DES_key_schedule from
a key, the second is the actual encryption. A DES key is of type DES_cblock. This type consists of 8 bytes
with odd parity. The least significant bit in each byte is the parity bit. The key schedule is an expanded
form of the key; it is used to speed the encryption process.

DES_random_key() generates a random key. The random generator must be seeded when calling this
function. If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to external
circumstances (see RAND(7)), the operation will fail. If the function fails, 0 is returned.

Before a DES key can be used, it must be converted into the architecture dependent DES_key_schedule via
the DES_set_key_checked() or DES_set_key_unchecked() function.

DES_set_key_checked() will check that the key passed is of odd parity and is not a weak or semi-weak
key. If the parity is wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If an error is
returned, the key schedule is not generated.

DES_set_key() works like DES_set_key_checked() if the DES_check_key flag is nonzero, otherwise like
DES_set_key_unchecked(). These functions are available for compatibility; it is recommended to use a
function that does not depend on a global variable.

DES_set_odd_parity() sets the parity of the passed key to odd.

DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.

1.1.1n 2023-08-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/RAND

DES_RANDOM_KEY (3SSL) OpenSSL DES_RANDOM_KEY (3SSL)

The following routines mostly operate on an input and output stream of DES_cblocks.

DES_ecb_encrypt() is the basic DES encryption routine that encrypts or decrypts a single 8-byte
DES_cblock in electronic code book (ECB) mode. It always transforms the input data, pointed to by input,
into the output data, pointed to by the output argument. If the encrypt argument is nonzero
(DES_ENCRYPT), the input (cleartext) is encrypted in to the output (ciphertext) using the key_schedule
specified by the schedule argument, previously set via DES_set_key. If encrypt is zero (DES_DECRYPT), the
input (now ciphertext) is decrypted into the output (now cleartext). Input and output may overlap.
DES_ecb_encrypt() does not return a value.

DES_ecb3_encrypt() encrypts/decrypts the input block by using three-key Triple-DES encryption in ECB
mode. This involves encrypting the input with ks1, decrypting with the key schedule ks2, and then
encrypting with ks3. This routine greatly reduces the chances of brute force breaking of DES and has the
advantage of if ks1, ks2 and ks3 are the same, it is equivalent to just encryption using ECB mode and ks1 as
the key.

The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES encryption by using ks1 for
the final encryption.

DES_ncbc_encrypt() encrypts/decrypts using the cipher-block-chaining (CBC) mode of DES. If the
encrypt argument is nonzero, the routine cipher-block-chain encrypts the cleartext data pointed to by the
input argument into the ciphertext pointed to by the output argument, using the key schedule provided by
the schedule argument, and initialization vector provided by the ivec argument. If the length argument is
not an integral multiple of eight bytes, the last block is copied to a temporary area and zero filled. The
output is always an integral multiple of eight bytes.

DES_xcbc_encrypt() is RSA’s DESX mode of DES. It uses inw and outw to ’whiten’ the encryption. inw
and outw are secret (unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes. This is
much better than CBC DES.

DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with three keys. This means that
each DES operation inside the CBC mode is C=E(ks3,D(ks2,E(ks1,M))). This mode is used by
SSL.

The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by reusing ks1 for the final
encryption. C=E(ks1,D(ks2,E(ks1,M))). This form of Triple-DES is used by the RSAREF library.

DES_pcbc_encrypt() encrypts/decrypts using the propagating cipher block chaining mode used by
Kerberos v4. Its parameters are the same as DES_ncbc_encrypt().

DES_cfb_encrypt() encrypts/decrypts using cipher feedback mode. This method takes an array of
characters as input and outputs an array of characters. It does not require any padding to 8 character
groups. Note: the ivec variable is changed and the new changed value needs to be passed to the next call to
this function. Since this function runs a complete DES ECB encryption per numbits, this function is only
suggested for use when sending a small number of characters.

DES_cfb64_encrypt() implements CFB mode of DES with 64-bit feedback. Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of bytes, without 8 byte padding. Each
call to this routine will encrypt the input bytes to output and then update ivec and num. num contains ’how
far’ we are though ivec. If this does not make much sense, read more about CFB mode of DES.

DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as DES_cfb64_encrypt()
except that Triple-DES is used.

DES_ofb_encrypt() encrypts using output feedback mode. This method takes an array of characters as
input and outputs an array of characters. It does not require any padding to 8 character groups. Note: the
ivec variable is changed and the new changed value needs to be passed to the next call to this function.
Since this function runs a complete DES ECB encryption per numbits, this function is only suggested for use
when sending a small number of characters.

DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output Feed Back mode.

DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as DES_ofb64_encrypt(),

1.1.1n 2023-08-15 3

DES_RANDOM_KEY (3SSL) OpenSSL DES_RANDOM_KEY (3SSL)

using Triple-DES.

The following functions are included in the DES library for compatibility with the MIT Kerberos library.

DES_cbc_cksum() produces an 8 byte checksum based on the input stream (via CBC encryption). The last
4 bytes of the checksum are returned and the complete 8 bytes are placed in output. This function is used by
Kerberos v4. Other applications should use EVP_DigestInit(3) etc. instead.

DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The
algorithm can be iterated over the input, depending on out_count, 1, 2, 3 or 4 times. If output is non-
NULL, the 8 bytes generated by each pass are written into output.

The following are DES-based transformations:

DES_fcrypt() is a fast version of the Unix crypt(3) function. This version takes only a small amount of
space relative to other fast crypt() implementations. This is different to the normal crypt() in that the third
parameter is the buffer that the return value is written into. It needs to be at least 14 bytes long. This
function is thread safe, unlike the normal crypt().

DES_crypt() is a faster replacement for the normal system crypt(). This function calls DES_fcrypt() with
a static array passed as the third parameter. This mostly emulates the normal non-thread-safe semantics of
crypt(3) . The salt must be two ASCII characters.

The values returned by DES_fcrypt() and DES_crypt() are terminated by NUL character.

DES_enc_write() writes len bytes to file descriptor fd from buffer buf. The data is encrypted via
pcbc_encrypt (default) using sched for the key and iv as a starting vector. The actual data send down fd
consists of 4 bytes (in network byte order) containing the length of the following encrypted data. The
encrypted data then follows, padded with random data out to a multiple of 8 bytes.

BUGS
DES_cbc_encrypt() does not modify ivec; use DES_ncbc_encrypt() instead.

DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. What this means is that if you set
numbits to 12, and length to 2, the first 12 bits will come from the 1st input byte and the low half of the
second input byte. The second 12 bits will have the low 8 bits taken from the 3rd input byte and the top 4
bits taken from the 4th input byte. The same holds for output. This function has been implemented this
way because most people will be using a multiple of 8 and because once you get into pulling bytes input
bytes apart things get ugly!

DES_string_to_key() is available for backward compatibility with the MIT library. New applications
should use a cryptographic hash function. The same applies for DES_string_to_2key().

NOTES
The des library was written to be source code compatible with the MIT Kerberos library.

Applications should use the higher level functions EVP_EncryptInit(3) etc. instead of calling these
functions directly.

Single-key DES is insecure due to its short key size. ECB mode is not suitable for most applications; see
des_modes(7) .

RETURN VALUES
DES_set_key(), DES_key_sched(), DES_set_key_checked() and DES_is_weak_key() return 0 on
success or negative values on error.

DES_cbc_cksum() and DES_quad_cksum() return 4-byte integer representing the last 4 bytes of the
checksum of the input.

DES_fcrypt() returns a pointer to the caller-provided buffer and DES_crypt() - to a static buffer on
success; otherwise they return NULL.

SEE ALSO
des_modes(7) , EVP_EncryptInit(3)

1.1.1n 2023-08-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_DigestInit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/crypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/crypt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_EncryptInit
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/des_modes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/des_modes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_EncryptInit

DES_RANDOM_KEY (3SSL) OpenSSL DES_RANDOM_KEY (3SSL)

HISTORY
The requirement that the salt parameter to DES_crypt() and DES_fcrypt() be two ASCII characters was
first enforced in OpenSSL 1.1.0. Previous versions tried to use the letter uppercase A if both character
were not present, and could crash when given non-ASCII on some platforms.

COPYRIGHT
Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with
the License. You can obtain a copy in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.

1.1.1n 2023-08-15 5

https://www.openssl.org/source/license.html

	DES_RANDOM_KEY(3SSL)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	BUGS
	BUGS

	NOTES
	NOTES

	RETURN VALUES
	RETURN VALUES

	SEE ALSO
	SEE ALSO

	HISTORY
	HISTORY

	COPYRIGHT
	COPYRIGHT

