
EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

NAME
EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free, EVP_EncryptInit_ex,
EVP_EncryptUpdate, EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate,
EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit, EVP_EncryptFinal,
EVP_DecryptInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size,
EVP_CIPHER_key_length, EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode,
EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, EVP_CIPHER_CTX_nid,
EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, EVP_CIPHER_CTX_iv_length,
EVP_CIPHER_CTX_get_app_data, EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type,
EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1,
EVP_CIPHER_asn1_to_param, EVP_CIPHER_CTX_set_padding, EVP_enc_null - EVP cipher routines

SYNOPSIS
#include <openssl/evp.h>

EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, const unsigned char *key, const unsigned char *iv);

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, const unsigned char *in, int inl);

int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, const unsigned char *key, const unsigned char *iv);

int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, const unsigned char *in, int inl);

int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc);

int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *outl, const unsigned char *in, int inl);

int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
const unsigned char *key, const unsigned char *iv);

int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
const unsigned char *key, const unsigned char *iv);

int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
const unsigned char *key, const unsigned char *iv, int enc);

int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key);

1.1.1n 2023-08-15 1

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
const EVP_CIPHER *EVP_get_cipherbynid(int nid);
const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);

int EVP_CIPHER_nid(const EVP_CIPHER *e);
int EVP_CIPHER_block_size(const EVP_CIPHER *e);
int EVP_CIPHER_key_length(const EVP_CIPHER *e);
int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
int EVP_CIPHER_type(const EVP_CIPHER *ctx);

const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);

int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

DESCRIPTION
The EVP cipher routines are a high-level interface to certain symmetric ciphers.

EVP_CIPHER_CTX_new() creates a cipher context.

EVP_CIPHER_CTX_free() clears all information from a cipher context and free up any allocated
memory associate with it, including ctx itself. This function should be called after all operations using a
cipher are complete so sensitive information does not remain in memory.

EVP_EncryptInit_ex() sets up cipher context ctx for encryption with cipher type from ENGINE impl. ctx
must be created before calling this function. type is normally supplied by a function such as
EVP_aes_256_cbc(). If impl is NULL then the default implementation is used. key is the symmetric key to
use and iv is the IV to use (if necessary), the actual number of bytes used for the key and IV depends on the
cipher. It is possible to set all parameters to NULL except type in an initial call and supply the remaining
parameters in subsequent calls, all of which have type set to NULL. This is done when the default cipher
parameters are not appropriate.

EVP_EncryptUpdate() encrypts inl bytes from the buffer in and writes the encrypted version to out. This
function can be called multiple times to encrypt successive blocks of data. The amount of data written
depends on the block alignment of the encrypted data. For most ciphers and modes, the amount of data
written can be anything from zero bytes to (inl + cipher_block_size - 1) bytes. For wrap cipher modes, the
amount of data written can be anything from zero bytes to (inl + cipher_block_size) bytes. For stream
ciphers, the amount of data written can be anything from zero bytes to inl bytes. Thus, out should contain
sufficient room for the operation being performed. The actual number of bytes written is placed in outl. It
also checks if in and out are partially overlapping, and if they are 0 is returned to indicate failure.

If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts the ‘‘final’’ data, that is any data
that remains in a partial block. It uses standard block padding (aka PKCS padding) as described in the
NOTES section, below. The encrypted final data is written to out which should have sufficient space for one
cipher block. The number of bytes written is placed in outl. After this function is called the encryption
operation is finished and no further calls to EVP_EncryptUpdate() should be made.

If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more data and it will return an

1.1.1n 2023-08-15 2

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

error if any data remains in a partial block: that is if the total data length is not a multiple of the block size.

EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the corresponding
decryption operations. EVP_DecryptFinal() will return an error code if padding is enabled and the final
block is not correctly formatted. The parameters and restrictions are identical to the encryption operations
except that if padding is enabled the decrypted data buffer out passed to EVP_DecryptUpdate() should
have sufficient room for (inl + cipher_block_size) bytes unless the cipher block size is 1 in which case inl
bytes is sufficient.

EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are functions that can be used
for decryption or encryption. The operation performed depends on the value of the enc parameter. It should
be set to 1 for encryption, 0 for decryption and -1 to leave the value unchanged (the actual value of ’enc’
being supplied in a previous call).

EVP_CIPHER_CTX_reset() clears all information from a cipher context and free up any allocated
memory associate with it, except the ctx itself. This function should be called anytime ctx is to be reused
for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal() series of calls.

EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a similar way to
EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and EVP_CipherInit_ex() except they always use the
default cipher implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are identical to
EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and EVP_CipherFinal_ex(). In previous releases
they also cleaned up the ctx, but this is no longer done and EVP_CIPHER_CTX_clean() must be called to
free any context resources.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an EVP_CIPHER
structure when passed a cipher name, a NID or an ASN1_OBJECT structure.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX structure. The actual NID value is an internal value which may not
have a corresponding OBJECT IDENTIFIER.

EVP_CIPHER_CTX_set_padding() enables or disables padding. This function should be called after the
context is set up for encryption or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
EVP_CipherInit_ex(). By default encryption operations are padded using standard block padding and the
padding is checked and removed when decrypting. If the pad parameter is zero then no padding is
performed, the total amount of data encrypted or decrypted must then be a multiple of the block size or an
error will occur.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length of a cipher
when passed an EVP_CIPHER or EVP_CIPHER_CTX structure. The constant EVP_MAX_KEY_LENGTH
is the maximum key length for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
given cipher, the value of EVP_CIPHER_CTX_key_length() may be different for variable key length
ciphers.

EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. If the cipher is a fixed length
cipher then attempting to set the key length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length of a cipher when
passed an EVP_CIPHER or EVP_CIPHER_CTX. It will return zero if the cipher does not use an IV. The
constant EVP_MAX_IV_LENGTH is the maximum IV length for all ciphers.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size of a cipher
when passed an EVP_CIPHER or EVP_CIPHER_CTX structure. The constant
EVP_MAX_BLOCK_LENGTH is also the maximum block length for all ciphers.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed cipher or context.
This ‘‘type’’ is the actual NID of the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters
and 40 bit RC2 and 128 bit RC2 have the same NID. If the cipher does not have an object identifier or does
not have ASN1 support this function will return NID_undef.

1.1.1n 2023-08-15 3

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure when passed an EVP_CIPHER_CTX
structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE, EVP_CIPH_OFB_MODE,
EVP_CIPH_CTR_MODE, EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE, EVP_CIPH_XTS_MODE,
EVP_CIPH_WRAP_MODE or EVP_CIPH_OCB_MODE. If the cipher is a stream cipher then
EVP_CIPH_STREAM_CIPHER is returned.

EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier ‘‘parameter’’ based on the passed cipher.
This will typically include any parameters and an IV. The cipher IV (if any) must be set when this call is
made. This call should be made before the cipher is actually ‘‘used’’ (before any EVP_EncryptUpdate(),
EVP_DecryptUpdate() calls for example). This function may fail if the cipher does not have any ASN1
support.

EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 AlgorithmIdentifier
‘‘parameter’’. The precise effect depends on the cipher In the case of RC2, for example, it will set the IV and
effective key length. This function should be called after the base cipher type is set but before the key is
set. For example EVP_CipherInit() will be called with the IV and key set to NULL,
EVP_CIPHER_asn1_to_param() will be called and finally EVP_CipherInit() again with all parameters
except the key set to NULL. It is possible for this function to fail if the cipher does not have any ASN1
support or the parameters cannot be set (for example the RC2 effective key length is not supported.

EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined and set.

EVP_CIPHER_CTX_rand_key() generates a random key of the appropriate length based on the cipher
context. The EVP_CIPHER can provide its own random key generation routine to support keys of a specific
form. Key must point to a buffer at least as big as the value returned by
EVP_CIPHER_CTX_key_length().

RETURN VALUES
EVP_CIPHER_CTX_new() returns a pointer to a newly created EVP_CIPHER_CTX for success and
NULL for failure.

EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() return 1 for success and 0
for failure.

EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.

EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.

EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an
EVP_CIPHER structure or NULL on error.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length.

EVP_CIPHER_CTX_set_padding() always returns 1.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length or zero if the
cipher does not use an IV.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher’s OBJECT
IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.

EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater than zero for
success and zero or a negative number on failure.

1.1.1n 2023-08-15 4

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

EVP_CIPHER_CTX_rand_key() returns 1 for success.

CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.

Refer to ‘‘SEE ALSO’’ for the full list of ciphers available through the EVP interface.

EVP_enc_null()
Null cipher: does nothing.

AEAD Interface
The EVP interface for Authenticated Encryption with Associated Data (AEAD) modes are subtly altered and
several additional ctrl operations are supported depending on the mode specified.

To specify additional authenticated data (AAD), a call to EVP_CipherUpdate(), EVP_EncryptUpdate()
or EVP_DecryptUpdate() should be made with the output parameter out set to NULL.

When decrypting, the return value of EVP_DecryptFinal() or EVP_CipherFinal() indicates whether the
operation was successful. If it does not indicate success, the authentication operation has failed and any
output data MUST NOT be used as it is corrupted.

GCM and OCB Modes
The following ctrls are supported in GCM and OCB modes.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
Sets the IV length. This call can only be made before specifying an IV. If not called a default IV length
is used.

For GCM AES and OCB AES the default is 12 (i.e. 96 bits). For OCB mode the maximum is 15.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
Writes taglen bytes of the tag value to the buffer indicated by tag. This call can only be made
when encrypting data and after all data has been processed (e.g. after an EVP_EncryptFinal() call).

For OCB, taglen must either be 16 or the value previously set via EVP_CTRL_AEAD_SET_TAG.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
When decrypting, this call sets the expected tag to taglen bytes from tag. taglen must be
between 1 and 16 inclusive. The tag must be set prior to any call to EVP_DecryptFinal() or
EVP_DecryptFinal_ex().

For GCM, this call is only valid when decrypting data.

For OCB, this call is valid when decrypting data to set the expected tag, and when encrypting to set the
desired tag length.

In OCB mode, calling this when encrypting with tag set to NULL sets the tag length. The tag length
can only be set before specifying an IV. If this is not called prior to setting the IV during encryption,
then a default tag length is used.

For OCB AES, the default tag length is 16 (i.e. 128 bits). It is also the maximum tag length for OCB.

CCM Mode
The EVP interface for CCM mode is similar to that of the GCM mode but with a few additional requirements
and different ctrl values.

For CCM mode, the total plaintext or ciphertext length MUST be passed to EVP_CipherUpdate(),
EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output and input parameters (in and out) set
to NULL and the length passed in the inl parameter.

The following ctrls are supported in CCM mode.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
This call is made to set the expected CCM tag value when decrypting or the length of the tag (with the
tag parameter set to NULL) when encrypting. The tag length is often referred to as M. If not set a
default value is used (12 for AES). When decrypting, the tag needs to be set before passing in data to

1.1.1n 2023-08-15 5

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

be decrypted, but as in GCM and OCB mode, it can be set after passing additional authenticated data
(see ‘‘AEAD Interface’’).

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL)
Sets the CCM L value. If not set a default is used (8 for AES).

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
Sets the CCM nonce (IV) length. This call can only be made before specifying a nonce value. The
nonce length is given by 15 - L so it is 7 by default for AES.

ChaCha20-Poly1305
The following ctrls are supported for the ChaCha20-Poly1305 AEAD algorithm.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
Sets the nonce length. This call can only be made before specifying the nonce. If not called a default
nonce length of 12 (i.e. 96 bits) is used. The maximum nonce length is 12 bytes (i.e. 96-bits). If a
nonce of less than 12 bytes is set then the nonce is automatically padded with leading 0 bytes to make
it 12 bytes in length.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
Writes taglen bytes of the tag value to the buffer indicated by tag. This call can only be made
when encrypting data and after all data has been processed (e.g. after an EVP_EncryptFinal() call).

taglen specified here must be 16 (POLY1305_BLOCK_SIZE, i.e. 128-bits) or less.

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
Sets the expected tag to taglen bytes from tag. The tag length can only be set before specifying an
IV. taglen must be between 1 and 16 (POLY1305_BLOCK_SIZE) inclusive. This call is only valid
when decrypting data.

NOTES
Where possible the EVP interface to symmetric ciphers should be used in preference to the low-level
interfaces. This is because the code then becomes transparent to the cipher used and much more flexible.
Additionally, the EVP interface will ensure the use of platform specific cryptographic acceleration such as
AES-NI (the low-level interfaces do not provide the guarantee).

PKCS padding works by adding n padding bytes of value n to make the total length of the encrypted data a
multiple of the block size. Padding is always added so if the data is already a multiple of the block size n
will equal the block size. For example if the block size is 8 and 11 bytes are to be encrypted then 5 padding
bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that the
input data or key is correct. A random block has better than 1 in 256 chance of being of the correct format
and problems with the input data earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data
decrypted is a multiple of the block size.

The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), EVP_CipherInit() and
EVP_CipherFinal() are obsolete but are retained for compatibility with existing code. New code should
use EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
EVP_DecryptFinal_ex(), EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
existing context without allocating and freeing it up on each call.

There are some differences between functions EVP_CipherInit() and EVP_CipherInit_ex(), significant in
some circumstances. EVP_CipherInit() fills the passed context object with zeros. As a consequence,
EVP_CipherInit() does not allow step-by-step initialization of the ctx when the key and iv are passed in
separate calls. It also means that the flags set for the CTX are removed, and it is especially important for the
EVP_CIPHER_CTX_FLAG_WRAP_ALLOW flag treated specially in EVP_CipherInit_ex().

EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.

1.1.1n 2023-08-15 6

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

BUGS
EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with default key
lengths. If custom ciphers exceed these values the results are unpredictable. This is because it has become
standard practice to define a generic key as a fixed unsigned char array containing
EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common
S/MIME ciphers (RC2, DES, triple DES) in CBC mode.

EXAMPLES
Encrypt a string using IDEA:

int do_crypt(char *outfile)
{

unsigned char outbuf[1024];
int outlen, tmplen;
/*
* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
unsigned char iv[] = {1,2,3,4,5,6,7,8};
char intext[] = "Some Crypto Text";
EVP_CIPHER_CTX *ctx;
FILE *out;

ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);

if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext))) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;

}
/*
* Buffer passed to EVP_EncryptFinal() must be after data just
* encrypted to avoid overwriting it.
*/
if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) {

/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;

}
outlen += tmplen;
EVP_CIPHER_CTX_free(ctx);
/*
* Need binary mode for fopen because encrypted data is
* binary data. Also cannot use strlen() on it because
* it won't be NUL terminated and may contain embedded
* NULs.
*/
out = fopen(outfile, "wb");
if (out == NULL) {

/* Error */
return 0;

}

1.1.1n 2023-08-15 7

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

fwrite(outbuf, 1, outlen, out);
fclose(out);
return 1;

}

The ciphertext from the above example can be decrypted using the openssl utility with the command line
(shown on two lines for clarity):

openssl idea -d \
-K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 <filename

General encryption and decryption function example using FILE I/O and AES128 with a 128-bit key:

int do_crypt(FILE *in, FILE *out, int do_encrypt)
{

/* Allow enough space in output buffer for additional block */
unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
int inlen, outlen;
EVP_CIPHER_CTX *ctx;
/*
* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] = "0123456789abcdeF";
unsigned char iv[] = "1234567887654321";

/* Don't set key or IV right away; we want to check lengths */
ctx = EVP_CIPHER_CTX_new();
EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,

do_encrypt);
OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);

/* Now we can set key and IV */
EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);

for (;;) {
inlen = fread(inbuf, 1, 1024, in);
if (inlen <= 0)

break;
if (!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen)) {

/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;

}
fwrite(outbuf, 1, outlen, out);

}
if (!EVP_CipherFinal_ex(ctx, outbuf, &outlen)) {

/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;

}
fwrite(outbuf, 1, outlen, out);

EVP_CIPHER_CTX_free(ctx);
return 1;

}

1.1.1n 2023-08-15 8

EVP_ENCRYPTINIT (3SSL) OpenSSL EVP_ENCRYPTINIT (3SSL)

SEE ALSO
evp(7)

Supported ciphers are listed in:

EVP_aes(3) , EVP_aria(3) , EVP_bf(3) , EVP_camellia(3) , EVP_cast5(3) , EVP_chacha20(3) ,
EVP_des(3) , EVP_desx(3) , EVP_idea(3) , EVP_rc2(3) , EVP_rc4(3) , EVP_rc5(3) , EVP_seed(3) ,
EVP_sm4(3)

HISTORY
Support for OCB mode was added in OpenSSL 1.1.0.

EVP_CIPHER_CTX was made opaque in OpenSSL 1.1.0. As a result, EVP_CIPHER_CTX_reset()
appeared and EVP_CIPHER_CTX_cleanup() disappeared. EVP_CIPHER_CTX_init() remains as an
alias for EVP_CIPHER_CTX_reset().

COPYRIGHT
Copyright 2000-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with
the License. You can obtain a copy in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.

1.1.1n 2023-08-15 9

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/evp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_aes
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_aria
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_camellia
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_chacha20
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_des
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/EVP_rc4
https://www.openssl.org/source/license.html

	EVP_ENCRYPTINIT(3SSL)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUES
	RETURN VALUES

	CIPHER LISTING
	CIPHER LISTING
	EVP_enc_null()

	AEAD Interface
	AEAD Interface
	GCM and OCB Modes
	GCM and OCB Modes
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)

	CCM Mode
	CCM Mode
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)

	ChaCha20-Poly1305
	ChaCha20-Poly1305
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag)
	EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag)

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLES
	EXAMPLES

	SEE ALSO
	SEE ALSO

	HISTORY
	HISTORY

	COPYRIGHT
	COPYRIGHT

