
X509_VERIFY_PARAM_SET_FLAGS(3SSL) OpenSSL X509_VERIFY_PARAM_SET_FLAGS(3SSL)

NAME
X509_VERIFY_PARAM_set_flags, X509_VERIFY_PARAM_clear_flags,
X509_VERIFY_PARAM_get_flags, X509_VERIFY_PARAM_set_purpose,
X509_VERIFY_PARAM_get_inh_flags, X509_VERIFY_PARAM_set_inh_flags,
X509_VERIFY_PARAM_set_trust, X509_VERIFY_PARAM_set_depth,
X509_VERIFY_PARAM_get_depth, X509_VERIFY_PARAM_set_auth_level,
X509_VERIFY_PARAM_get_auth_level, X509_VERIFY_PARAM_set_time,
X509_VERIFY_PARAM_get_time, X509_VERIFY_PARAM_add0_policy,
X509_VERIFY_PARAM_set1_policies, X509_VERIFY_PARAM_set1_host,
X509_VERIFY_PARAM_add1_host, X509_VERIFY_PARAM_set_hostflags,
X509_VERIFY_PARAM_get_hostflags, X509_VERIFY_PARAM_get0_peername,
X509_VERIFY_PARAM_set1_email, X509_VERIFY_PARAM_set1_ip,
X509_VERIFY_PARAM_set1_ip_asc - X509 verification parameters

SYNOPSIS
#include <openssl/x509_vfy.h>

int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param,
unsigned long flags);

int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param,
unsigned long flags);

unsigned long X509_VERIFY_PARAM_get_flags(X509_VERIFY_PARAM *param);

int X509_VERIFY_PARAM_set_inh_flags(X509_VERIFY_PARAM *param,
uint32_t flags);

uint32_t X509_VERIFY_PARAM_get_inh_flags(const X509_VERIFY_PARAM *param);

int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose);
int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust);

void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t);
time_t X509_VERIFY_PARAM_get_time(const X509_VERIFY_PARAM *param);

int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param,
ASN1_OBJECT *policy);

int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param,
STACK_OF(ASN1_OBJECT) *policies);

void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth);
int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param);

void X509_VERIFY_PARAM_set_auth_level(X509_VERIFY_PARAM *param,
int auth_level);

int X509_VERIFY_PARAM_get_auth_level(const X509_VERIFY_PARAM *param);

int X509_VERIFY_PARAM_set1_host(X509_VERIFY_PARAM *param,
const char *name, size_t namelen);

int X509_VERIFY_PARAM_add1_host(X509_VERIFY_PARAM *param,
const char *name, size_t namelen);

void X509_VERIFY_PARAM_set_hostflags(X509_VERIFY_PARAM *param,
unsigned int flags);

unsigned int X509_VERIFY_PARAM_get_hostflags(const X509_VERIFY_PARAM *param);
char *X509_VERIFY_PARAM_get0_peername(X509_VERIFY_PARAM *param);
int X509_VERIFY_PARAM_set1_email(X509_VERIFY_PARAM *param,

const char *email, size_t emaillen);

1.1.1n 2023-08-15 1

X509_VERIFY_PARAM_SET_FLAGS(3SSL) OpenSSL X509_VERIFY_PARAM_SET_FLAGS(3SSL)

int X509_VERIFY_PARAM_set1_ip(X509_VERIFY_PARAM *param,
const unsigned char *ip, size_t iplen);

int X509_VERIFY_PARAM_set1_ip_asc(X509_VERIFY_PARAM *param, const char *ipasc);

DESCRIPTION
These functions manipulate the X509_VERIFY_PARAM structure associated with a certificate
verification operation.

The X509_VERIFY_PARAM_set_flags() function sets the flags in param by oring it with flags. See the
VERIFICATION FLAGS section for a complete description of values the flags parameter can take.

X509_VERIFY_PARAM_get_flags() returns the flags in param.

X509_VERIFY_PARAM_get_inh_flags() returns the inheritance flags in param which specifies how
verification flags are copied from one structure to another. X509_VERIFY_PARAM_set_inh_flags() sets
the inheritance flags. See the INHERITANCE FLAGS section for a description of these bits.

X509_VERIFY_PARAM_clear_flags() clears the flags flags in param.

X509_VERIFY_PARAM_set_purpose() sets the verification purpose in param to purpose. This
determines the acceptable purpose of the certificate chain, for example SSL client or SSL server.

X509_VERIFY_PARAM_set_trust() sets the trust setting in param to trust.

X509_VERIFY_PARAM_set_time() sets the verification time in param to t. Normally the current time is
used.

X509_VERIFY_PARAM_add0_policy() adds policy to the acceptable policy set. Contrary to preexisting
documentation of this function it does not enable policy checking.

X509_VERIFY_PARAM_set1_policies() enables policy checking (it is disabled by default) and sets the
acceptable policy set to policies. Any existing policy set is cleared. The policies parameter can be NULL to
clear an existing policy set.

X509_VERIFY_PARAM_set_depth() sets the maximum verification depth to depth. That is the
maximum number of intermediate CA certificates that can appear in a chain. A maximal depth chain
contains 2 more certificates than the limit, since neither the end-entity certificate nor the trust-anchor count
against this limit. Thus a depth limit of 0 only allows the end-entity certificate to be signed directly by the
trust-anchor, while with a depth limit of 1 there can be one intermediate CA certificate between the trust-
anchor and the end-entity certificate.

X509_VERIFY_PARAM_set_auth_level() sets the authentication security level to auth_level. The
authentication security level determines the acceptable signature and public key strength when verifying
certificate chains. For a certificate chain to validate, the public keys of all the certificates must meet the
specified security level. The signature algorithm security level is not enforced for the chain’s trust anchor
certificate, which is either directly trusted or validated by means other than its signature. See
SSL_CTX_set_security_level(3) for the definitions of the available levels. The default security level is
-1, or ‘‘not set’’. At security level 0 or lower all algorithms are acceptable. Security level 1 requires at
least 80-bit-equivalent security and is broadly interoperable, though it will, for example, reject MD5
signatures or RSA keys shorter than 1024 bits.

X509_VERIFY_PARAM_set1_host() sets the expected DNS hostname to name clearing any previously
specified hostname or names. If name is NULL, or empty the list of hostnames is cleared, and name checks
are not performed on the peer certificate. If name is NUL-terminated, namelen may be zero, otherwise
namelen must be set to the length of name.

When a hostname is specified, certificate verification automatically invokes X509_check_host(3) with
flags equal to the flags argument given to X509_VERIFY_PARAM_set_hostflags() (default zero).
Applications are strongly advised to use this interface in preference to explicitly calling
X509_check_host(3) , hostname checks may be out of scope with the DANE-EE (3) certificate usage, and
the internal check will be suppressed as appropriate when DANE verification is enabled.

When the subject CommonName will not be ignored, whether as a result of the

1.1.1n 2023-08-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/SSL_CTX_set_security_level
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_host
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_host

X509_VERIFY_PARAM_SET_FLAGS(3SSL) OpenSSL X509_VERIFY_PARAM_SET_FLAGS(3SSL)

X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT host flag, or because no DNS subject alternative
names are present in the certificate, any DNS name constraints in issuer certificates apply to the subject
CommonName as well as the subject alternative name extension.

When the subject CommonName will be ignored, whether as a result of the
X509_CHECK_FLAG_NEVER_CHECK_SUBJECT host flag, or because some DNS subject alternative
names are present in the certificate, DNS name constraints in issuer certificates will not be applied to the
subject DN. As described in X509_check_host(3) the
X509_CHECK_FLAG_NEVER_CHECK_SUBJECT flag takes precedence over the
X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT flag.

X509_VERIFY_PARAM_get_hostflags() returns any host flags previously set via a call to
X509_VERIFY_PARAM_set_hostflags().

X509_VERIFY_PARAM_add1_host() adds name as an additional reference identifier that can match the
peer’s certificate. Any previous names set via X509_VERIFY_PARAM_set1_host() or
X509_VERIFY_PARAM_add1_host() are retained, no change is made if name is NULL or empty. When
multiple names are configured, the peer is considered verified when any name matches.

X509_VERIFY_PARAM_get0_peername() returns the DNS hostname or subject CommonName from the
peer certificate that matched one of the reference identifiers. When wildcard matching is not disabled, or
when a reference identifier specifies a parent domain (starts with ‘‘.’’) rather than a hostname, the peer
name may be a wildcard name or a sub-domain of the reference identifier respectively. The return string is
allocated by the library and is no longer valid once the associated param argument is freed. Applications
must not free the return value.

X509_VERIFY_PARAM_set1_email() sets the expected RFC822 email address to email. If email is
NUL-terminated, emaillen may be zero, otherwise emaillen must be set to the length of email. When an
email address is specified, certificate verification automatically invokes X509_check_email(3) .

X509_VERIFY_PARAM_set1_ip() sets the expected IP address to ip. The ip argument is in binary
format, in network byte-order and iplen must be set to 4 for IPv4 and 16 for IPv6. When an IP address is
specified, certificate verification automatically invokes X509_check_ip(3) .

X509_VERIFY_PARAM_set1_ip_asc() sets the expected IP address to ipasc. The ipasc argument is a
NUL-terminal ASCII string: dotted decimal quad for IPv4 and colon-separated hexadecimal for IPv6. The
condensed ‘‘::’’ notation is supported for IPv6 addresses.

RETURN VALUES
X509_VERIFY_PARAM_set_flags(), X509_VERIFY_PARAM_clear_flags(),
X509_VERIFY_PARAM_set_inh_flags(), X509_VERIFY_PARAM_set_purpose(),
X509_VERIFY_PARAM_set_trust(), X509_VERIFY_PARAM_add0_policy()
X509_VERIFY_PARAM_set1_policies(), X509_VERIFY_PARAM_set1_host(),
X509_VERIFY_PARAM_add1_host(), X509_VERIFY_PARAM_set1_email(),
X509_VERIFY_PARAM_set1_ip() and X509_VERIFY_PARAM_set1_ip_asc() return 1 for success
and 0 for failure.

X509_VERIFY_PARAM_get_flags() returns the current verification flags.

X509_VERIFY_PARAM_get_hostflags() returns any current host flags.

X509_VERIFY_PARAM_get_inh_flags() returns the current inheritance flags.

X509_VERIFY_PARAM_set_time() and X509_VERIFY_PARAM_set_depth() do not return values.

X509_VERIFY_PARAM_get_depth() returns the current verification depth.

X509_VERIFY_PARAM_get_auth_level() returns the current authentication security level.

VERIFICATION FLAGS
The verification flags consists of zero or more of the following flags ored together.

X509_V_FLAG_CRL_CHECK enables CRL checking for the certificate chain leaf certificate. An error
occurs if a suitable CRL cannot be found.

1.1.1n 2023-08-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_host
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_email
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_ip

X509_VERIFY_PARAM_SET_FLAGS(3SSL) OpenSSL X509_VERIFY_PARAM_SET_FLAGS(3SSL)

X509_V_FLAG_CRL_CHECK_ALL enables CRL checking for the entire certificate chain.

X509_V_FLAG_IGNORE_CRITICAL disabled critical extension checking. By default any unhandled
critical extensions in certificates or (if checked) CRLs results in a fatal error. If this flag is set unhandled
critical extensions are ignored. WARNING setting this option for anything other than debugging purposes
can be a security risk. Finer control over which extensions are supported can be performed in the
verification callback.

The X509_V_FLAG_X509_STRICT flag disables workarounds for some broken certificates and makes
the verification strictly apply X509 rules.

X509_V_FLAG_ALLOW_PROXY_CERTS enables proxy certificate verification.

X509_V_FLAG_POLICY_CHECK enables certificate policy checking, by default no policy checking is
performed. Additional information is sent to the verification callback relating to policy checking.

X509_V_FLAG_EXPLICIT_POLICY, X509_V_FLAG_INHIBIT_ANY and
X509_V_FLAG_INHIBIT_MAP set the require explicit policy, inhibit any policy and inhibit policy
mapping flags respectively as defined in RFC3280. Policy checking is automatically enabled if any of these
flags are set.

If X509_V_FLAG_NOTIFY_POLICY is set and the policy checking is successful a special status code is
set to the verification callback. This permits it to examine the valid policy tree and perform additional
checks or simply log it for debugging purposes.

By default some additional features such as indirect CRLs and CRLs signed by different keys are disabled.
If X509_V_FLAG_EXTENDED_CRL_SUPPORT is set they are enabled.

If X509_V_FLAG_USE_DELTAS is set delta CRLs (if present) are used to determine certificate status. If
not set deltas are ignored.

X509_V_FLAG_CHECK_SS_SIGNATURE requests checking the signature of the last certificate in a
chain if the certificate is supposedly self-signed. This is prohibited and will result in an error if it is a non-
conforming CA certificate with key usage restrictions not including the keyCertSign bit. By default this
check is disabled because it doesn’t add any additional security but in some cases applications might want
to check the signature anyway. A side effect of not checking the self-signature of such a certificate is that
disabled or unsupported message digests used for the signature are not treated as fatal errors.

When X509_V_FLAG_TRUSTED_FIRST is set, construction of the certificate chain in
X509_verify_cert(3) will search the trust store for issuer certificates before searching the provided
untrusted certificates. Local issuer certificates are often more likely to satisfy local security requirements
and lead to a locally trusted root. This is especially important when some certificates in the trust store have
explicit trust settings (see ‘‘TRUST SETTINGS’’ in x509(1)). As of OpenSSL 1.1.0 this option is on by
default.

The X509_V_FLAG_NO_ALT_CHAINS flag suppresses checking for alternative chains. By default,
unless X509_V_FLAG_TRUSTED_FIRST is set, when building a certificate chain, if the first certificate
chain found is not trusted, then OpenSSL will attempt to replace untrusted certificates supplied by the peer
with certificates from the trust store to see if an alternative chain can be found that is trusted. As of
OpenSSL 1.1.0, with X509_V_FLAG_TRUSTED_FIRST always set, this option has no effect.

The X509_V_FLAG_PARTIAL_CHAIN flag causes intermediate certificates in the trust store to be
treated as trust-anchors, in the same way as the self-signed root CA certificates. This makes it possible to
trust certificates issued by an intermediate CA without having to trust its ancestor root CA. With OpenSSL
1.1.0 and later and <X509_V_FLAG_PARTIAL_CHAIN> set, chain construction stops as soon as the first
certificate from the trust store is added to the chain, whether that certificate is a self-signed ‘‘root’’
certificate or a not self-signed intermediate certificate. Thus, when an intermediate certificate is found in
the trust store, the verified chain passed to callbacks may be shorter than it otherwise would be without the
X509_V_FLAG_PARTIAL_CHAIN flag.

The X509_V_FLAG_NO_CHECK_TIME flag suppresses checking the validity period of certificates and
CRLs against the current time. If X509_VERIFY_PARAM_set_time() is used to specify a verification

1.1.1n 2023-08-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_verify_cert
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/x509

X509_VERIFY_PARAM_SET_FLAGS(3SSL) OpenSSL X509_VERIFY_PARAM_SET_FLAGS(3SSL)

time, the check is not suppressed.

INHERITANCE FLAGS
These flags specify how parameters are ‘‘inherited’’ from one structure to another.

If X509_VP_FLAG_ONCE is set then the current setting is zeroed after the next call.

If X509_VP_FLAG_LOCKED is set then no values are copied. This overrides all of the following flags.

If X509_VP_FLAG_DEFAULT is set then anything set in the source is copied to the destination.
Effectively the values in ‘‘to’’ become default values which will be used only if nothing new is set in
‘‘from’’. This is the default.

If X509_VP_FLAG_OVERWRITE is set then all value are copied across whether they are set or not.
Flags is still Ored though.

If X509_VP_FLAG_RESET_FLAGS is set then the flags value is copied instead of ORed.

NOTES
The above functions should be used to manipulate verification parameters instead of functions which work
in specific structures such as X509_STORE_CTX_set_flags() which are likely to be deprecated in a future
release.

BUGS
Delta CRL checking is currently primitive. Only a single delta can be used and (partly due to limitations of
X509_STORE) constructed CRLs are not maintained.

If CRLs checking is enable CRLs are expected to be available in the corresponding X509_STORE
structure. No attempt is made to download CRLs from the CRL distribution points extension.

EXAMPLES
Enable CRL checking when performing certificate verification during SSL connections associated with an
SSL_CTX structure ctx:

X509_VERIFY_PARAM *param;

param = X509_VERIFY_PARAM_new();
X509_VERIFY_PARAM_set_flags(param, X509_V_FLAG_CRL_CHECK);
SSL_CTX_set1_param(ctx, param);
X509_VERIFY_PARAM_free(param);

SEE ALSO
X509_verify_cert(3) , X509_check_host(3) , X509_check_email(3) , X509_check_ip(3) , x509(1)

HISTORY
The X509_V_FLAG_NO_ALT_CHAINS flag was added in OpenSSL 1.1.0. The flag
X509_V_FLAG_CB_ISSUER_CHECK was deprecated in OpenSSL 1.1.0 and has no effect.

The X509_VERIFY_PARAM_get_hostflags() function was added in OpenSSL 1.1.0i.

The function X509_VERIFY_PARAM_add0_policy() was historically documented as enabling policy
checking however the implementation has never done this. The documentation was changed to align with
the implementation.

COPYRIGHT
Copyright 2009-2020 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the ‘‘License’’). You may not use this file except in compliance with
the License. You can obtain a copy in the file LICENSE in the source distribution or at
<https://www.openssl.org/source/license.html>.

1.1.1n 2023-08-15 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_verify_cert
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_host
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_email
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/X509_check_ip
http://chuzzlewit.co.uk/WebManPDF.pl/man:/1/x509
https://www.openssl.org/source/license.html

	X509_VERIFY_PARAM_SET_FLAGS(3SSL)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION

	RETURN VALUES
	RETURN VALUES

	VERIFICATION FLAGS
	VERIFICATION FLAGS

	INHERITANCE FLAGS
	INHERITANCE FLAGS

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLES
	EXAMPLES

	SEE ALSO
	SEE ALSO

	HISTORY
	HISTORY

	COPYRIGHT
	COPYRIGHT

