
EPOLL(7) Linux Programmer’s Manual EPOLL(7)

NAME
epoll - I/O event notification facility

SYNOPSIS
#include <sys/epoll.h>

DESCRIPTION
The epoll API performs a similar task to poll(2): monitoring multiple file descriptors to see if I/O is possi-
ble on any of them. The epoll API can be used either as an edge-triggered or a level-triggered interface and
scales well to large numbers of watched file descriptors. The following system calls are provided to create
and manage an epoll instance:

* epoll_create(2) creates a new epoll instance and returns a file descriptor referring to that instance. (The
more recent epoll_create1(2) extends the functionality of epoll_create(2).)

* Interest in particular file descriptors is then registered via epoll_ctl(2). The set of file descriptors cur-
rently registered on an epoll instance is sometimes called an epoll set.

* epoll_wait(2) waits for I/O events, blocking the calling thread if no events are currently available.

Level-triggered and edge-triggered
The epoll event distribution interface is able to behave both as edge-triggered (ET) and as level-triggered
(LT). The difference between the two mechanisms can be described as follows. Suppose that this scenario
happens:

1. The file descriptor that represents the read side of a pipe (rfd) is registered on the epoll instance.

2. A pipe writer writes 2 kB of data on the write side of the pipe.

3. A call to epoll_wait(2) is done that will return rfd as a ready file descriptor.

4. The pipe reader reads 1 kB of data from rfd .

5. A call to epoll_wait(2) is done.

If the rfd file descriptor has been added to the epoll interface using the EPOLLET (edge-triggered) flag,
the call to epoll_wait(2) done in step 5 will probably hang despite the available data still present in the file
input buffer; meanwhile the remote peer might be expecting a response based on the data it already sent.
The reason for this is that edge-triggered mode delivers events only when changes occur on the monitored
file descriptor. So, in step 5 the caller might end up waiting for some data that is already present inside the
input buffer. In the above example, an event on rfd will be generated because of the write done in 2 and the
event is consumed in 3. Since the read operation done in 4 does not consume the whole buffer data, the call
to epoll_wait(2) done in step 5 might block indefinitely.

An application that employs the EPOLLET flag should use nonblocking file descriptors to avoid having a
blocking read or write starve a task that is handling multiple file descriptors. The suggested way to use
epoll as an edge-triggered (EPOLLET) interface is as follows:

i with nonblocking file descriptors; and

ii by waiting for an event only after read(2) or write(2) return EAGAIN.

By contrast, when used as a level-triggered interface (the default, when EPOLLET is not specified), epoll
is simply a faster poll(2), and can be used wherever the latter is used since it shares the same semantics.

Since even with edge-triggered epoll, multiple events can be generated upon receipt of multiple chunks of
data, the caller has the option to specify the EPOLLONESHOT flag, to tell epoll to disable the associated
file descriptor after the receipt of an event with epoll_wait(2). When the EPOLLONESHOT flag is speci-
fied, it is the caller’s responsibility to rearm the file descriptor using epoll_ctl(2) with
EPOLL_CTL_MOD.

Interaction with autosleep
If the system is in autosleep mode via /sys/power/autosleep and an event happens which wakes the device
from sleep, the device driver will keep the device awake only until that event is queued. To keep the device
awake until the event has been processed, it is necessary to use the epoll_ctl(2) EPOLLWAKEUP flag.

Linux 2017-09-15 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create1
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl

EPOLL(7) Linux Programmer’s Manual EPOLL(7)

When the EPOLLWAKEUP flag is set in the events field for a struct epoll_event, the system will be kept
awake from the moment the event is queued, through the epoll_wait(2) call which returns the event until the
subsequent epoll_wait(2) call. If the event should keep the system awake beyond that time, then a separate
wake_lock should be taken before the second epoll_wait(2) call.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed by epoll:

/proc/sys/fs/epoll/max_user_watches (since Linux 2.6.28)
This specifies a limit on the total number of file descriptors that a user can register across all epoll
instances on the system. The limit is per real user ID. Each registered file descriptor costs roughly
90 bytes on a 32-bit kernel, and roughly 160 bytes on a 64-bit kernel. Currently, the default value
for max_user_watches is 1/25 (4%) of the available low memory, divided by the registration cost
in bytes.

Example for suggested usage
While the usage of epoll when employed as a level-triggered interface does have the same semantics as
poll(2), the edge-triggered usage requires more clarification to avoid stalls in the application event loop. In
this example, listener is a nonblocking socket on which listen(2) has been called. The function do_use_fd()
uses the new ready file descriptor until EAGAIN is returned by either read(2) or write(2). An event-driven
state machine application should, after having received EAGAIN, record its current state so that at the next
call to do_use_fd() it will continue to read(2) or write(2) from where it stopped before.

#define MAX_EVENTS 10
struct epoll_event ev, events[MAX_EVENTS];
int listen_sock, conn_sock, nfds, epollfd;

/* Code to set up listening socket, 'listen_sock',
(socket(), bind(), listen()) omitted */

epollfd = epoll_create1(0);
if (epollfd == -1) {
perror("epoll_create1");
exit(EXIT_FAILURE);
}

ev.events = EPOLLIN;
ev.data.fd = listen_sock;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev) == -1) {
perror("epoll_ctl: listen_sock");
exit(EXIT_FAILURE);
}

for (;;) {
nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);
if (nfds == -1) {
perror("epoll_wait");
exit(EXIT_FAILURE);
}

for (n = 0; n < nfds; ++n) {
if (events[n].data.fd == listen_sock) {
conn_sock = accept(listen_sock,
(struct sockaddr *) &addr, &addrlen);
if (conn_sock == -1) {
perror("accept");
exit(EXIT_FAILURE);
}
setnonblocking(conn_sock);

Linux 2017-09-15 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/listen
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write

EPOLL(7) Linux Programmer’s Manual EPOLL(7)

ev.events = EPOLLIN | EPOLLET;
ev.data.fd = conn_sock;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, conn_sock,
&ev) == -1) {
perror("epoll_ctl: conn_sock");
exit(EXIT_FAILURE);
}
} else {
do_use_fd(events[n].data.fd);
}
}
}

When used as an edge-triggered interface, for performance reasons, it is possible to add the file descriptor
inside the epoll interface (EPOLL_CTL_ADD) once by specifying (EPOLLIN|EPOLLOUT). This al-
lows you to avoid continuously switching between EPOLLIN and EPOLLOUT calling epoll_ctl(2) with
EPOLL_CTL_MOD.

Questions and answers
Q0 What is the key used to distinguish the file descriptors registered in an epoll set?

A0 The key is the combination of the file descriptor number and the open file description (also known as
an "open file handle", the kernel’s internal representation of an open file).

Q1 What happens if you register the same file descriptor on an epoll instance twice?

A1 You will probably get EEXIST. However, it is possible to add a duplicate (dup(2), dup2(2), fcntl(2)
F_DUPFD) file descriptor to the same epoll instance. This can be a useful technique for filtering
events, if the duplicate file descriptors are registered with different events masks.

Q2 Can two epoll instances wait for the same file descriptor? If so, are events reported to both epoll file
descriptors?

A2 Yes, and events would be reported to both. However, careful programming may be needed to do this
correctly.

Q3 Is the epoll file descriptor itself poll/epoll/selectable?

A3 Yes. If an epoll file descriptor has events waiting, then it will indicate as being readable.

Q4 What happens if one attempts to put an epoll file descriptor into its own file descriptor set?

A4 The epoll_ctl(2) call fails (EINVAL). However, you can add an epoll file descriptor inside another
epoll file descriptor set.

Q5 Can I send an epoll file descriptor over a UNIX domain socket to another process?

A5 Yes, but it does not make sense to do this, since the receiving process would not have copies of the file
descriptors in the epoll set.

Q6 Will closing a file descriptor cause it to be removed from all epoll sets automatically?

A6 Yes, but be aware of the following point. A file descriptor is a reference to an open file description
(see open(2)). Whenever a file descriptor is duplicated via dup(2), dup2(2), fcntl(2) F_DUPFD, or
fork(2), a new file descriptor referring to the same open file description is created. An open file de-
scription continues to exist until all file descriptors referring to it have been closed. A file descriptor is
removed from an epoll set only after all the file descriptors referring to the underlying open file de-
scription have been closed (or before if the file descriptor is explicitly removed using epoll_ctl(2)
EPOLL_CTL_DEL). This means that even after a file descriptor that is part of an epoll set has been
closed, events may be reported for that file descriptor if other file descriptors referring to the same un-
derlying file description remain open.

Linux 2017-09-15 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/open
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup2
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fcntl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fork
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl

EPOLL(7) Linux Programmer’s Manual EPOLL(7)

Q7 If more than one event occurs between epoll_wait(2) calls, are they combined or reported separately?

A7 They will be combined.

Q8 Does an operation on a file descriptor affect the already collected but not yet reported events?

A8 You can do two operations on an existing file descriptor. Remove would be meaningless for this case.
Modify will reread available I/O.

Q9 Do I need to continuously read/write a file descriptor until EAGAIN when using the EPOLLET flag
(edge-triggered behavior) ?

A9 Receiving an event from epoll_wait(2) should suggest to you that such file descriptor is ready for the
requested I/O operation. You must consider it ready until the next (nonblocking) read/write yields
EAGAIN. When and how you will use the file descriptor is entirely up to you.

For packet/token-oriented files (e.g., datagram socket, terminal in canonical mode), the only way to
detect the end of the read/write I/O space is to continue to read/write until EAGAIN.

For stream-oriented files (e.g., pipe, FIFO, stream socket), the condition that the read/write I/O space
is exhausted can also be detected by checking the amount of data read from / written to the target file
descriptor. For example, if you call read(2) by asking to read a certain amount of data and read(2) re-
turns a lower number of bytes, you can be sure of having exhausted the read I/O space for the file de-
scriptor. The same is true when writing using write(2). (Avoid this latter technique if you cannot
guarantee that the monitored file descriptor always refers to a stream-oriented file.)

Possible pitfalls and ways to avoid them
o Starvation (edge-triggered)

If there is a large amount of I/O space, it is possible that by trying to drain it the other files will not get
processed causing starvation. (This problem is not specific to epoll.)

The solution is to maintain a ready list and mark the file descriptor as ready in its associated data structure,
thereby allowing the application to remember which files need to be processed but still round robin
amongst all the ready files. This also supports ignoring subsequent events you receive for file descriptors
that are already ready.

o If using an event cache...

If you use an event cache or store all the file descriptors returned from epoll_wait(2), then make sure to pro-
vide a way to mark its closure dynamically (i.e., caused by a previous event’s processing). Suppose you re-
ceive 100 events from epoll_wait(2), and in event #47 a condition causes event #13 to be closed. If you re-
move the structure and close(2) the file descriptor for event #13, then your event cache might still say there
are events waiting for that file descriptor causing confusion.

One solution for this is to call, during the processing of event 47, epoll_ctl(EPOLL_CTL_DEL) to delete
file descriptor 13 and close(2), then mark its associated data structure as removed and link it to a cleanup
list. If you find another event for file descriptor 13 in your batch processing, you will discover the file de-
scriptor had been previously removed and there will be no confusion.

VERSIONS
The epoll API was introduced in Linux kernel 2.5.44. Support was added to glibc in version 2.3.2.

CONFORMING TO
The epoll API is Linux-specific. Some other systems provide similar mechanisms, for example, FreeBSD
has kqueue, and Solaris has /dev/poll.

NOTES
The set of file descriptors that is being monitored via an epoll file descriptor can be viewed via the entry for
the epoll file descriptor in the process’s /proc/[pid]/fdinfo directory. See proc(5) for further details.

The kcmp(2) KCMP_EPOLL_TFD operation can be used to test whether a file descriptor is present in an
epoll instance.

Linux 2017-09-15 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/read
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/write
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/close
http://chuzzlewit.co.uk/WebManPDF.pl/man:/5/proc
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/kcmp

EPOLL(7) Linux Programmer’s Manual EPOLL(7)

SEE ALSO
epoll_create(2), epoll_create1(2), epoll_ctl(2), epoll_wait(2), poll(2), select(2)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_create1
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_ctl
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/epoll_wait
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/poll
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/select
https://www.kernel.org/doc/man

	EPOLL(7)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Level-triggered and edge-triggered
	Level-triggered and edge-triggered
	i

	Interaction with autosleep
	Interaction with autosleep

	/proc interfaces
	/proc interfaces

	Example for suggested usage
	Example for suggested usage

	Questions and answers
	Questions and answers
	Q0

	Possible pitfalls and ways to avoid them
	Possible pitfalls and ways to avoid them

	VERSIONS
	VERSIONS

	CONFORMING TO
	CONFORMING TO

	NOTES
	NOTES

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

