
UNIX(7) Linux Programmer’s Manual UNIX(7)

NAME
unix - sockets for local interprocess communication

SYNOPSIS
#include <sys/socket.h>
#include <sys/un.h>

unix_socket = socket(AF_UNIX, type, 0);
error = socketpair(AF_UNIX, type, 0, int *sv);

DESCRIPTION
The AF_UNIX (also known as AF_LOCAL) socket family is used to communicate between processes on
the same machine efficiently. Traditionally, UNIX domain sockets can be either unnamed, or bound to a
filesystem pathname (marked as being of type socket). Linux also supports an abstract namespace which is
independent of the filesystem.

Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-oriented socket;
SOCK_DGRAM, for a datagram-oriented socket that preserves message boundaries (as on most UNIX
implementations, UNIX domain datagram sockets are always reliable and don’t reorder datagrams); and
(since Linux 2.6.4) SOCK_SEQPACKET, for a sequenced-packet socket that is connection-oriented, pre-
serves message boundaries, and delivers messages in the order that they were sent.

UNIX domain sockets support passing file descriptors or process credentials to other processes using ancil-
lary data.

Address format
A UNIX domain socket address is represented in the following structure:

struct sockaddr_un {
sa_family_t sun_family; /* AF_UNIX */
char sun_path[108]; /* pathname */
};

The sun_family field always contains AF_UNIX. On Linux sun_path is 108 bytes in size; see also
NOTES, below.

Various systems calls (for example, bind(2), connect(2), and sendto(2)) take a sockaddr_un argument as in-
put. Some other system calls (for example, getsockname(2), getpeername(2), recvfrom(2), and accept(2))
return an argument of this type.

Three types of address are distinguished in the sockaddr_un structure:

* pathname: a UNIX domain socket can be bound to a null-terminated filesystem pathname using
bind(2). When the address of a pathname socket is returned (by one of the system calls noted above),
its length is

offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1

and sun_path contains the null-terminated pathname. (On Linux, the above offsetof() expression
equates to the same value as sizeof(sa_family_t), but some other implementations include other fields
before sun_path, so the offsetof() expression more portably describes the size of the address structure.)

For further details of pathname sockets, see below.

* unnamed: A stream socket that has not been bound to a pathname using bind(2) has no name. Like-
wise, the two sockets created by socketpair(2) are unnamed. When the address of an unnamed socket is
returned, its length is sizeof(sa_family_t), and sun_path should not be inspected.

* abstract: an abstract socket address is distinguished (from a pathname socket) by the fact that
sun_path[0] is a null byte ('\0'). The socket’s address in this namespace is given by the additional bytes
in sun_path that are covered by the specified length of the address structure. (Null bytes in the name
have no special significance.) The name has no connection with filesystem pathnames. When the ad-
dress of an abstract socket is returned, the returned addrlen is greater than sizeof(sa_family_t) (i.e.,
greater than 2), and the name of the socket is contained in the first (addrlen - sizeof(sa_family_t)) bytes

Linux 2018-04-30 1

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendto
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getsockname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpeername
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvfrom
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socketpair

UNIX(7) Linux Programmer’s Manual UNIX(7)

of sun_path.

Pathname sockets
When binding a socket to a pathname, a few rules should be observed for maximum portability and ease of
coding:

* The pathname in sun_path should be null-terminated.

* The length of the pathname, including the terminating null byte, should not exceed the size of sun_path.

* The addrlen argument that describes the enclosing sockaddr_un structure should have a value of at
least:

offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1

or, more simply, addrlen can be specified as sizeof(struct sockaddr_un).

There is some variation in how implementations handle UNIX domain socket addresses that do not follow
the above rules. For example, some (but not all) implementations append a null terminator if none is
present in the supplied sun_path.

When coding portable applications, keep in mind that some implementations have sun_path as short as 92
bytes.

Various system calls (accept(2), recvfrom(2), getsockname(2), getpeername(2)) return socket address struc-
tures. When applied to UNIX domain sockets, the value-result addrlen argument supplied to the call
should be initialized as above. Upon return, the argument is set to indicate the actual size of the address
structure. The caller should check the value returned in this argument: if the output value exceeds the input
value, then there is no guarantee that a null terminator is present in sun_path. (See BUGS.)

Pathname socket ownership and permissions
In the Linux implementation, pathname sockets honor the permissions of the directory they are in. Creation
of a new socket fails if the process does not have write and search (execute) permission on the directory in
which the socket is created.

On Linux, connecting to a stream socket object requires write permission on that socket; sending a data-
gram to a datagram socket likewise requires write permission on that socket. POSIX does not make any
statement about the effect of the permissions on a socket file, and on some systems (e.g., older BSDs), the
socket permissions are ignored. Portable programs should not rely on this feature for security.

When creating a new socket, the owner and group of the socket file are set according to the usual rules.
The socket file has all permissions enabled, other than those that are turned off by the process umask(2).

The owner, group, and permissions of a pathname socket can be changed (using chown(2) and chmod(2)).

Abstract sockets
Socket permissions have no meaning for abstract sockets: the process umask(2) has no effect when binding
an abstract socket, and changing the ownership and permissions of the object (via fchown(2) and
fchmod(2)) has no effect on the accessibility of the socket.

Abstract sockets automatically disappear when all open references to the socket are closed.

The abstract socket namespace is a nonportable Linux extension.

Socket options
For historical reasons, these socket options are specified with a SOL_SOCKET type even though they are
AF_UNIX specific. They can be set with setsockopt(2) and read with getsockopt(2) by specifying
SOL_SOCKET as the socket family.

SO_PASSCRED
Enables the receiving of the credentials of the sending process in an ancillary message. When this
option is set and the socket is not yet connected a unique name in the abstract namespace will be
generated automatically. Expects an integer boolean flag.

Linux 2018-04-30 2

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvfrom
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getsockname
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getpeername
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/umask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/chmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/umask
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fchown
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/fchmod
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/setsockopt
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/getsockopt

UNIX(7) Linux Programmer’s Manual UNIX(7)

Autobind feature
If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the SO_PASSCRED socket option was speci-
fied for a socket that was not explicitly bound to an address, then the socket is autobound to an abstract ad-
dress. The address consists of a null byte followed by 5 bytes in the character set [0-9a-f]. Thus, there is
a limit of 2ˆ20 autobind addresses. (From Linux 2.1.15, when the autobind feature was added, 8 bytes were
used, and the limit was thus 2ˆ32 autobind addresses. The change to 5 bytes came in Linux 2.3.15.)

Sockets API
The following paragraphs describe domain-specific details and unsupported features of the sockets API for
UNIX domain sockets on Linux.

UNIX domain sockets do not support the transmission of out-of-band data (the MSG_OOB flag for send(2)
and recv(2)).

The send(2) MSG_MORE flag is not supported by UNIX domain sockets.

Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2) was not supported by UNIX
domain sockets.

The SO_SNDBUF socket option does have an effect for UNIX domain sockets, but the SO_RCVBUF op-
tion does not. For datagram sockets, the SO_SNDBUF value imposes an upper limit on the size of outgo-
ing datagrams. This limit is calculated as the doubled (see socket(7)) option value less 32 bytes used for
overhead.

Ancillary messages
Ancillary data is sent and received using sendmsg(2) and recvmsg(2). For historical reasons the ancillary
message types listed below are specified with a SOL_SOCKET type even though they are AF_UNIX spe-
cific. To send them set the cmsg_level field of the struct cmsghdr to SOL_SOCKET and the cmsg_type
field to the type. For more information see cmsg(3).

SCM_RIGHTS
Send or receive a set of open file descriptors from another process. The data portion contains an
integer array of the file descriptors. The passed file descriptors behave as though they have been
created with dup(2).

SCM_CREDENTIALS
Send or receive UNIX credentials. This can be used for authentication. The credentials are passed
as a struct ucred ancillary message. Thus structure is defined in <sys/socket.h> as follows:

struct ucred {
pid_t pid; /* process ID of the sending process */
uid_t uid; /* user ID of the sending process */
gid_t gid; /* group ID of the sending process */
};

Since glibc 2.8, the _GNU_SOURCE feature test macro must be defined (before including any
header files) in order to obtain the definition of this structure.

The credentials which the sender specifies are checked by the kernel. A process with effective
user ID 0 is allowed to specify values that do not match its own. The sender must specify its own
process ID (unless it has the capability CAP_SYS_ADMIN), its real user ID, effective user ID, or
saved set-user-ID (unless it has CAP_SETUID), and its real group ID, effective group ID, or
saved set-group-ID (unless it has CAP_SETGID). To receive a struct ucred message the
SO_PASSCRED option must be enabled on the socket.

Ioctls
The following ioctl(2) calls return information in value. The correct syntax is:

int value;
error = ioctl(unix_socket, ioctl_type, &value);

ioctl_type can be:

Linux 2018-04-30 3

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/bind
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recv
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/dup
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/ioctl

UNIX(7) Linux Programmer’s Manual UNIX(7)

SIOCINQ
For SOCK_STREAM socket the function returns the amount of queued unread data in the receive
buffer. The socket must not be in LISTEN state, otherwise an error (EINVAL) is returned.
SIOCINQ is defined in <linux/sockios.h>. Alternatively, you can use the synonymous FION-
READ, defined in <sys/ioctl.h>. For SOCK_DGRAM socket, the returned value is the same as
for Internet domain datagram socket; see udp(7).

ERRORS
EADDRINUSE

The specified local address is already in use or the filesystem socket object already exists.

EBADF
This error can occur for sendmsg(2) when sending a file descriptor as ancillary data over a UNIX
domain socket (see the description of SCM_RIGHTS, above), and indicates that the file descrip-
tor number that is being sent is not valid (e.g., it is not an open file descriptor).

ECONNREFUSED
The remote address specified by connect(2) was not a listening socket. This error can also occur if
the target pathname is not a socket.

ECONNRESET
Remote socket was unexpectedly closed.

EFAULT
User memory address was not valid.

EINVAL
Invalid argument passed. A common cause is that the value AF_UNIX was not specified in the
sun_type field of passed addresses, or the socket was in an invalid state for the applied operation.

EISCONN
connect(2) called on an already connected socket or a target address was specified on a connected
socket.

ENOENT
The pathname in the remote address specified to connect(2) did not exist.

ENOMEM
Out of memory.

ENOTCONN
Socket operation needs a target address, but the socket is not connected.

EOPNOTSUPP
Stream operation called on non-stream oriented socket or tried to use the out-of-band data option.

EPERM
The sender passed invalid credentials in the struct ucred .

EPIPE Remote socket was closed on a stream socket. If enabled, a SIGPIPE is sent as well. This can be
avoided by passing the MSG_NOSIGNAL flag to send(2) or sendmsg(2).

EPROTONOSUPPORT
Passed protocol is not AF_UNIX.

EPROTOTYPE
Remote socket does not match the local socket type (SOCK_DGRAM versus
SOCK_STREAM).

ESOCKTNOSUPPORT
Unknown socket type.

ETOOMANYREFS
This error can occur for sendmsg(2) when sending a file descriptor as ancillary data over a UNIX
domain socket (see the description of SCM_RIGHTS, above). It occurs if the number of "in-

Linux 2018-04-30 4

http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/udp
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/connect
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/send
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg

UNIX(7) Linux Programmer’s Manual UNIX(7)

flight" file descriptors exceeds the RLIMIT_NOFILE resource limit and the caller does not have
the CAP_SYS_RESOURCE capability. An in-flight file descriptor is one that has been sent us-
ing sendmsg(2) but has not yet been accepted in the recipient process using recvmsg(2).

This error is diagnosed since mainline Linux 4.5 (and in some earlier kernel versions where the fix
has been backported). In earlier kernel versions, it was possible to place an unlimited number of
file descriptors in flight, by sending each file descriptor with sendmsg(2) and then closing the file
descriptor so that it was not accounted against the RLIMIT_NOFILE resource limit.

Other errors can be generated by the generic socket layer or by the filesystem while generating a filesystem
socket object. See the appropriate manual pages for more information.

VERSIONS
SCM_CREDENTIALS and the abstract namespace were introduced with Linux 2.2 and should not be
used in portable programs. (Some BSD-derived systems also support credential passing, but the implemen-
tation details differ.)

NOTES
Binding to a socket with a filename creates a socket in the filesystem that must be deleted by the caller
when it is no longer needed (using unlink(2)). The usual UNIX close-behind semantics apply; the socket
can be unlinked at any time and will be finally removed from the filesystem when the last reference to it is
closed.

To pass file descriptors or credentials over a SOCK_STREAM socket, you must to send or receive at least
one byte of nonancillary data in the same sendmsg(2) or recvmsg(2) call.

UNIX domain stream sockets do not support the notion of out-of-band data.

BUGS
When binding a socket to an address, Linux is one of the implementations that appends a null terminator if
none is supplied in sun_path. In most cases this is unproblematic: when the socket address is retrieved, it
will be one byte longer than that supplied when the socket was bound. However, there is one case where
confusing behavior can result: if 108 non-null bytes are supplied when a socket is bound, then the addition
of the null terminator takes the length of the pathname beyond sizeof(sun_path). Consequently, when re-
trieving the socket address (for example, via accept(2)), if the input addrlen argument for the retrieving call
is specified as sizeof(struct sockaddr_un), then the returned address structure won’t have a null terminator
in sun_path.

In addition, some implementations don’t require a null terminator when binding a socket (the addrlen argu-
ment is used to determine the length of sun_path) and when the socket address is retrieved on these imple-
mentations, there is no null terminator in sun_path.

Applications that retrieve socket addresses can (portably) code to handle the possibility that there is no null
terminator in sun_path by respecting the fact that the number of valid bytes in the pathname is:

strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))

Alternatively, an application can retrieve the socket address by allocating a buffer of size sizeof(struct sock-
addr_un)+1 that is zeroed out before the retrieval. The retrieving call can specify addrlen as sizeof(struct
sockaddr_un), and the extra zero byte ensures that there will be a null terminator for the string returned in
sun_path:

void *addrp;

addrlen = sizeof(struct sockaddr_un);
addrp = malloc(addrlen + 1);
if (addrp == NULL)
/* Handle error */ ;
memset(addrp, 0, addrlen + 1);

if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)
/* handle error */ ;

Linux 2018-04-30 5

http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/unlink
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/accept

UNIX(7) Linux Programmer’s Manual UNIX(7)

printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);

This sort of messiness can be avoided if it is guaranteed that the applications that create pathname sockets
follow the rules outlined above under Pathname sockets.

EXAMPLE
The following code demonstrates the use of sequenced-packet sockets for local interprocess communica-
tion. It consists of two programs. The server program waits for a connection from the client program. The
client sends each of its command-line arguments in separate messages. The server treats the incoming mes-
sages as integers and adds them up. The client sends the command string "END". The server sends back a
message containing the sum of the client’s integers. The client prints the sum and exits. The server waits
for the next client to connect. To stop the server, the client is called with the command-line argument
"DOWN".

The following output was recorded while running the server in the background and repeatedly executing the
client. Execution of the server program ends when it receives the "DOWN" command.

Example output
$./server &
[1] 25887
$./client 3 4
Result = 7
$./client 11 -5
Result = 6
$./client DOWN
Result = 0
[1]+ Done ./server
$

Program source

/*
* File connection.h
*/

#define SOCKET_NAME "/tmp/9Lq7BNBnBycd6nxy.socket"
#define BUFFER_SIZE 12

/*
* File server.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include "connection.h"

int
main(int argc, char *argv[])
{
struct sockaddr_un name;
int down_flag = 0;
int ret;
int connection_socket;
int data_socket;
int result;

Linux 2018-04-30 6

UNIX(7) Linux Programmer’s Manual UNIX(7)

char buffer[BUFFER_SIZE];

/*
* In case the program exited inadvertently on the last run,
* remove the socket.
*/

unlink(SOCKET_NAME);

/* Create local socket. */

connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (connection_socket == -1) {
perror("socket");
exit(EXIT_FAILURE);
}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&name, 0, sizeof(struct sockaddr_un));

/* Bind socket to socket name. */

name.sun_family = AF_UNIX;
strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);

ret = bind(connection_socket, (const struct sockaddr *) &name,
sizeof(struct sockaddr_un));
if (ret == -1) {
perror("bind");
exit(EXIT_FAILURE);
}

/*
* Prepare for accepting connections. The backlog size is set
* to 20. So while one request is being processed other requests
* can be waiting.
*/

ret = listen(connection_socket, 20);
if (ret == -1) {
perror("listen");
exit(EXIT_FAILURE);
}

/* This is the main loop for handling connections. */

for (;;) {

/* Wait for incoming connection. */

data_socket = accept(connection_socket, NULL, NULL);
if (data_socket == -1) {
perror("accept");
exit(EXIT_FAILURE);
}

result = 0;

Linux 2018-04-30 7

UNIX(7) Linux Programmer’s Manual UNIX(7)

for(;;) {

/* Wait for next data packet. */

ret = read(data_socket, buffer, BUFFER_SIZE);
if (ret == -1) {
perror("read");
exit(EXIT_FAILURE);
}

/* Ensure buffer is 0-terminated. */

buffer[BUFFER_SIZE - 1] = 0;

/* Handle commands. */

if (!strncmp(buffer, "DOWN", BUFFER_SIZE)) {
down_flag = 1;
break;
}

if (!strncmp(buffer, "END", BUFFER_SIZE)) {
break;
}

/* Add received summand. */

result += atoi(buffer);
}

/* Send result. */

sprintf(buffer, "%d", result);
ret = write(data_socket, buffer, BUFFER_SIZE);

if (ret == -1) {
perror("write");
exit(EXIT_FAILURE);
}

/* Close socket. */

close(data_socket);

/* Quit on DOWN command. */

if (down_flag) {
break;
}
}

close(connection_socket);

/* Unlink the socket. */

unlink(SOCKET_NAME);

exit(EXIT_SUCCESS);
}

/*
* File client.c
*/

#include <errno.h>

Linux 2018-04-30 8

UNIX(7) Linux Programmer’s Manual UNIX(7)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include "connection.h"

int
main(int argc, char *argv[])
{
struct sockaddr_un addr;
int i;
int ret;
int data_socket;
char buffer[BUFFER_SIZE];

/* Create local socket. */

data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (data_socket == -1) {
perror("socket");
exit(EXIT_FAILURE);
}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&addr, 0, sizeof(struct sockaddr_un));

/* Connect socket to socket address */

addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);

ret = connect (data_socket, (const struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (ret == -1) {
fprintf(stderr, "The server is down.\n");
exit(EXIT_FAILURE);
}

/* Send arguments. */

for (i = 1; i < argc; ++i) {
ret = write(data_socket, argv[i], strlen(argv[i]) + 1);
if (ret == -1) {
perror("write");
break;
}
}

/* Request result. */

strcpy (buffer, "END");
ret = write(data_socket, buffer, strlen(buffer) + 1);
if (ret == -1) {

Linux 2018-04-30 9

UNIX(7) Linux Programmer’s Manual UNIX(7)

perror("write");
exit(EXIT_FAILURE);
}

/* Receive result. */

ret = read(data_socket, buffer, BUFFER_SIZE);
if (ret == -1) {
perror("read");
exit(EXIT_FAILURE);
}

/* Ensure buffer is 0-terminated. */

buffer[BUFFER_SIZE - 1] = 0;

printf("Result = %s\n", buffer);

/* Close socket. */

close(data_socket);

exit(EXIT_SUCCESS);
}

For an example of the use of SCM_RIGHTS see cmsg(3).

SEE ALSO
recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabilities(7), credentials(7), socket(7), udp(7)

COLOPHON
This page is part of release 4.16 of the Linux man-pages project. A description of the project, information
about reporting bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux 2018-04-30 10

http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/recvmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/sendmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/2/socketpair
http://chuzzlewit.co.uk/WebManPDF.pl/man:/3/cmsg
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/capabilities
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/credentials
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/socket
http://chuzzlewit.co.uk/WebManPDF.pl/man:/7/udp
https://www.kernel.org/doc/man

	UNIX(7)
	NAME
	NAME

	SYNOPSIS
	SYNOPSIS

	DESCRIPTION
	DESCRIPTION
	Address format
	Address format

	Pathname sockets
	Pathname sockets

	Pathname socket ownership and permissions
	Pathname socket ownership and permissions

	Abstract sockets
	Abstract sockets

	Socket options
	Socket options

	Autobind feature
	Autobind feature

	Sockets API
	Sockets API

	Ancillary messages
	Ancillary messages

	Ioctls
	Ioctls

	ERRORS
	ERRORS

	VERSIONS
	VERSIONS

	NOTES
	NOTES

	BUGS
	BUGS

	EXAMPLE
	EXAMPLE
	Example output
	Example output

	Program source
	Program source

	SEE ALSO
	SEE ALSO

	COLOPHON
	COLOPHON

